June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Large deformation indentation of porcine ocular lenses: experiments and computational modeling
Author Affiliations & Notes
  • Richard Regueiro
    Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO
  • Louis Foucard
    Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO
  • Franck Vernerey
    Mechanical Engineering, University of Colorado Boulder, Boulder, CO
  • Christopher Bay
    Mechanical Engineering, Texas A&M University, College Station, TX
  • Footnotes
    Commercial Relationships Richard Regueiro, None; Louis Foucard, None; Franck Vernerey, None; Christopher Bay, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 1081. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Richard Regueiro, Louis Foucard, Franck Vernerey, Christopher Bay; Large deformation indentation of porcine ocular lenses: experiments and computational modeling. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):1081.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract
 
Purpose
 

Mechanical characterization and modeling of the human lens can lead to increased understanding of trauma suffered (e.g., by Intra-Ocular Foreign Body (IOFB) penetration) and effects of surgical procedures on the lens, thus possibly leading to better surgical treatments and vision correction methods.

 
Methods
 

Fresh 2+ year-old porcine eyes obtained <1 day post-mortem are dissected to extract the lens, which is then immersed for testing in a cup full of Balanced Salt Solution (BSS) warmed to 39.2°C (pig body temperature) to attempt to reduce the non-physiological effects of testing in-vitro. A puncture tip (6 different geometries) indents the lens (anteriorly and posteriorly) along its anterior-posterior axis at a displacement rate of 0.3 mm/s to 80% nominal strain. The capsule fails, either by puncture at the tip or by bulging rupture along the equatorial region. Force is measured and digital videos are taken of the indented lenses. Computational modeling using a coupled Lagrangian-Eulerian approach simulates the internal fiber cells as an isotropic viscous fluid (for now, see image), and the lens capsule as a hyperelastic impermeable membrane undergoing large deformation (no failure at the moment). The constitutive behavior of the capsule is derived using a multi-scale homogenization analysis of the deformation of a two-dimensional lattice approximation of the underlying type IV collagen meshwork structure. Axisymmetric conditions are assumed in the simulations up to puncture.

 
Results
 

The experimentally-measured and computationally-simulated force-displacement curves for extracted lenses, and membrane-fluid interaction of the capsule and internal substance, are matched up to large deformation before puncture.

 
Conclusions
 

Indentation loading is meant to mimic perforation by an IOFB. Currently, the experimental method is limited in that it ignores relaxation and tension in the zonules attached to the equatorial region of the lens capsule, and in turn the attachment of the zonules to the ciliary body. The method, however, successfully represents the puncture response of the whole lens. The coupled Eulerian-Lagrangian computational method allows for the first time the simulation of large indentation of the lens, accounting for capsule-substance interaction.  

 
Lagrangian-Eulerian multiscale computational model of membrane-substance large deformation response to indentation loading of whole lens.
 
Lagrangian-Eulerian multiscale computational model of membrane-substance large deformation response to indentation loading of whole lens.

 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×