June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Real-time ultra-high resolution optical coherence tomography monitoring of optical tissue effects caused by selective retina therapy
Author Affiliations & Notes
  • Patrick Steiner
    Ophthalmic Technology Lab, University of Bern, Bern, Switzerland
    HuCE- OptoLab, Berne University of Applied Sciences, Biel, Switzerland
  • Liselotte Erika Berger
    Universitätsklinik fur Augenheilkunde, Inselspital, Bern, Switzerland
  • Martin Zinkernagel
    Universitätsklinik fur Augenheilkunde, Inselspital, Bern, Switzerland
  • Andreas Ebneter
    Universitätsklinik fur Augenheilkunde, Inselspital, Bern, Switzerland
  • Boris Povazay
    HuCE- OptoLab, Berne University of Applied Sciences, Biel, Switzerland
  • Christoph Meier
    HuCE- OptoLab, Berne University of Applied Sciences, Biel, Switzerland
  • Sebastian Wolf
    Universitätsklinik fur Augenheilkunde, Inselspital, Bern, Switzerland
  • Raphael Sznitman
    Ophthalmic Technology Lab, University of Bern, Bern, Switzerland
  • Footnotes
    Commercial Relationships Patrick Steiner, None; Liselotte Erika Berger, None; Martin Zinkernagel, None; Andreas Ebneter, None; Boris Povazay, None; Christoph Meier, None; Sebastian Wolf, None; Raphael Sznitman, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 2401. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Patrick Steiner, Liselotte Erika Berger, Martin Zinkernagel, Andreas Ebneter, Boris Povazay, Christoph Meier, Sebastian Wolf, Raphael Sznitman; Real-time ultra-high resolution optical coherence tomography monitoring of optical tissue effects caused by selective retina therapy. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):2401.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract
 
Purpose
 

Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue.

 
Methods
 

Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application.

 
Results
 

Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyper-reflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy.

 
Conclusions
 

Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our ex-vivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.  

 
Time-lapse OCT scans of retinal tissue of a female patient (a) and from ex-vivo porcine eyes (b) treated with Selective Retina Therapy. Lesions were in both cases ophthalmoscopically invisible.
 
Time-lapse OCT scans of retinal tissue of a female patient (a) and from ex-vivo porcine eyes (b) treated with Selective Retina Therapy. Lesions were in both cases ophthalmoscopically invisible.

 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×