June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Ocular and systemic vascular transduction following intravenous injection of capsid mutant adeno-associated virus
Author Affiliations & Notes
  • Daniel M Lipinski
    Department of Ophthalmology, University of Florida, Gainesville, FL
    Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom
  • Chris Andrew Reid
    Department of Ophthalmology, University of Florida, Gainesville, FL
  • Sanford L Boye
    Department of Ophthalmology, University of Florida, Gainesville, FL
  • james peterson
    Department of Ophthalmology, University of Florida, Gainesville, FL
  • Xiaoping Qi
    Indiana University, Indianapolis, IN
  • Michael E Boulton
    Indiana University, Indianapolis, IN
  • William W Hauswirth
    Department of Ophthalmology, University of Florida, Gainesville, FL
  • Footnotes
    Commercial Relationships Daniel Lipinski, University of Florida (P); Chris Reid, None; Sanford Boye, University of Florida (P); james peterson, None; Xiaoping Qi, None; Michael Boulton, University of Florida (P); William Hauswirth, AGTC (C), AGTC (P), Bionic (I), University of Florida (P)
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 3160. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Daniel M Lipinski, Chris Andrew Reid, Sanford L Boye, james peterson, Xiaoping Qi, Michael E Boulton, William W Hauswirth; Ocular and systemic vascular transduction following intravenous injection of capsid mutant adeno-associated virus. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):3160.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: The ability to effectively deliver genetic material to vascular endothelial cells remains one of the greatest unmet challenges facing the development of gene therapies to prevent diseases with underlying vascular aetiology, such as diabetic retinopathy (DR) and neovascular age-related macular degeneration (NV-AMD). Herein, we assess the effectiveness of a rAAV2-based capsid mutant vector (Y272F, Y444F, Y500F, Y730F, T491V; termed, QuadYF+TV) with strong endothelial cell tropism at transducing the ocular vasculature following intravenous administration.

Methods: QuadYF+TV expressing an EGFP or luciferase reporter gene from a vascular endothelial cell specific (VECadherin) promoter was injected intravenously at high titre (1012gp per animal) in wild type (C57Bl/6j and Balb/c) mice via the retro-orbital venous sinus; control animals received intravenous injection of either unmodified AAV2 or PBS. Systemic transgene expression was assessed by in vivo bioluminescence imaging (luciferase) with cellular tropism confirmed by post-mortem histopathology (EGFP); vector genome distribution was quantified by qPCR assay of tissue samples harvested from all organs and correlated to the observed expression levels.

Results: Intravenous administration of QuadYF+TV.EGFP vector resulted in widespread transgene expression throughout the vasculature of most major organ systems, including the choroidal and retinal blood vessels of the eye. In vivo bioluminescence imaging of QuadYF+TV.Luciferase injected mice (n=9) revealed diffuse signal throughout the body and substantially reduced liver expression compared to unmodified AAV2 injected mice.

Conclusions: Intravenous administration of QuadYF+TV vector resulted in effective transduction of retinal and choroidal blood vessels, in addition to vasculature of several organ systems. The ability to target the vascular endothelium efficiently represents a significant advance towards the development of AAV-mediated gene therapies for the treatment of retinal diseases stemming from underlying vascular dysfunction, such as DR and NV-AMD.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×