June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Design of an intuitive motion controller for robot-assisted vitreoretinal surgery
Author Affiliations & Notes
  • Marc D de Smet
    Ophthalmology, MIOS, Lausanne, Switzerland
    PRECEYES, Eindhoven, Netherlands
  • Gerrit Naus
    PRECEYES, Eindhoven, Netherlands
  • Thijs H C M Meenink
    PRECEYES, Eindhoven, Netherlands
  • Maarten Beelen
    PRECEYES, Eindhoven, Netherlands
  • Nicky de Jonge
    PRECEYES, Eindhoven, Netherlands
  • Ron Hendrix
    Mechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
  • Maarten Steinbuch
    Mechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
  • Footnotes
    Commercial Relationships Marc de Smet, PRECEYES (C); Gerrit Naus, Preceyes (E); Thijs Meenink, Preceyes (E); Maarten Beelen, Preceyes (E); Nicky de Jonge, Preceyes (E); Ron Hendrix, None; Maarten Steinbuch, Preceyes (C), Preceyes (P)
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 403. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Marc D de Smet, Gerrit Naus, Thijs H C M Meenink, Maarten Beelen, Nicky de Jonge, Ron Hendrix, Maarten Steinbuch; Design of an intuitive motion controller for robot-assisted vitreoretinal surgery. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):403.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: In vitreoretinal surgery, limited manual precision curtails development of new, precision-enabled surgeries. Robot assistance can support surgeons in performing existing vitreoretinal procedures with higher reproducibility and enable new procedures.<br /> Intuitive control of any robotic system is an important prerequisite. An intuitive motion controller allowing the appropriate transfer of information and feedback between a surgeon and a robotic assistant are assessed for vitreoretinal surgical applications.

Methods: The motion controller mimics the instrument by: (1) having a pen like grip held at the tip as if manipulating the tip of an intraocular instrument;<br /> (2) having a remote center of motion comparable to the instrument usage, resulting in control in ‘eye coordinates’ as opposed to standard control in cartesian coordinates; (3)being able to automatically mirror motion to the same degree as instruments entering through the pars plana.<br /> Position encoders measure the motion input, from which control algorithms determine the motion output to the instrument manipulator, These algorithms further, enable tremor filtering, motion scaling and advanced support in e.g. semi automated motion patterns such as piercing motions.<br /> The motion controller is positioned within close reach of the surgical area, enabling hybrid control, i.e., using one hand to hold a manual instrument and the other to control the robot assisted instrument, while using the conventional surgical setting including the microscope. Coupling of manipulator and motion controller is insured by pressing a button on the side of the controller.

Results: 13 surgeons have evaluated the motion controller. The kinematic design and “eye coordinates” were seen as intuitive. Hybrid surgery, with one hand using the motion controller and the other a light pipe was experienced as inherently feasible. Being able to couple or uncouple the motion controller from the manipulator, or the ability to pause a task by releasing the actuating button was considered most valuable.

Conclusions: Mimicking the instrument motion by using ‘eye coordinates’ was seen as intuitive and desireable. Use in a mixed setting (robotic assistance) was easily integrated in existing procedures and with little interference during the non robotic portion of the surgery. Access to the surgical field was not hindered. Further development will focus on optimizing the gripper ergonomy.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×