June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Real-time dynamic depth tracking for arbitrarily long range OCT imaging and surgical instrument tracking using a Fourier domain optical delay line
Author Affiliations & Notes
  • Mohamed El-Haddad
    Ophthalmic Research, Cleveland Clinic Foundation, Shaker Heights, OH
  • Yuankai Tao
    Ophthalmic Research, Cleveland Clinic Foundation, Shaker Heights, OH
  • Footnotes
    Commercial Relationships Mohamed El-Haddad, None; Yuankai Tao, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 4089. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Mohamed El-Haddad, Yuankai Tao; Real-time dynamic depth tracking for arbitrarily long range OCT imaging and surgical instrument tracking using a Fourier domain optical delay line. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):4089.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract
 
Purpose
 

Intraoperative optical coherence tomography (iOCT) allows visualization of tissue microstructure, and provides real-time feedback for clinical decision making during ophthalmic surgery. However, the potential for iOCT-guided surgical maneuvers has been limited both by imaging speed, which can only display single cross-sectional images at video-rates, and imaging range, which is on the order of 2 mm for SDOCT and 8 mm for SSOCT. Last year, we presented novel lateral tracking technology that automatically centered the iOCT scan field on the tip of ophthalmic surgical instruments. Here, we demonstrate a digitally controlled optical delay that allows real-time depth tracking. Integration of automated lateral and depth tracking with iOCT will allow for dynamic three-dimensional field-of-view imaging of ophthalmic surgical dynamics.

 
Methods
 

A reference arm based on a Fourier domain optical delay line (FDODL), was designed to provide a digitally controlled optical delay for iOCT. A free-space optical delay on a motorized stage was added to the FDODL path to further extend the available tracking range. A control algorithm handles the actuation hand-off between the stage and the FDODL to allow for fast scanning over a short range, and slower scanning over a long range (Fig. 1). The FDODL allowed inter-line depth tracking over >16 mm depth range with a 100 µs small-angle step response (Fig. 1, δz) while the motorized stage allowed for inter-frame scanning over a 100 mm range at speeds up to 100 mm/s (Fig. 1, Δz).

 
Results
 

As a demonstration, we imaged a metal surface placed at ~62 deg. to the horizontal (Fig. 1). Without tracking, small part of the surface was visible (Fig. 1b, blue). The FDODL was then scanned by a saw-tooth function, effectively compensating for the tilt (Fig. 1b, red). The A-Scans in the latter represent different depths, in linear proportion to the applied voltage (3.7 mm/volt), which was corrected for in post-processing to reflect the true image over the entire range of the FDODL.

 
Conclusions
 

Integrating automated lateral and depth tracking with iOCT will allow real-time imaging of surgical dynamics. Improved understanding of tissue-instrument interactions during conventional ophthalmic surgical maneuvers may elucidate mechanisms of tissue repair, be predictive of clinical outcomes, and lead to novel iOCT-guided surgical techniques.  

 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×