June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
A critical role of HCN1 in the disease progression of retinitis pigmentosa
Author Affiliations & Notes
  • Christian Schön
    Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
  • Sabrina Asteriti
    Dept. of Translational Research, University of Pisa, Pisa, Italy
  • Susanne Koch
    Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
  • Lorenzo Cangiano
    Dept. of Translational Research, University of Pisa, Pisa, Italy
  • Martin Biel
    Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
  • Stylianos Michalakis
    Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
  • Footnotes
    Commercial Relationships Christian Schön, None; Sabrina Asteriti, None; Susanne Koch, None; Lorenzo Cangiano, None; Martin Biel, None; Stylianos Michalakis, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 5421. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Christian Schön, Sabrina Asteriti, Susanne Koch, Lorenzo Cangiano, Martin Biel, Stylianos Michalakis; A critical role of HCN1 in the disease progression of retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):5421.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: The hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) is expressed in photoreceptors and crucial for retinal function under mesopic conditions. So far, no clear association between the channel and any retinal disorders exists and only few studies addressed the question if HCN1 affects photoreceptor cell death in inherited retinal dystrophies. Therefore, we investigated the effects on rod photoreceptors after interfering with the expression or function of HCN1 in a mouse model of retinitis pigmentosa (RP).

Methods: Mice deficient for the Cngb1 gene, encoding the B1 subunit of the rod cyclic nucleotide-gated (CNG) channel, were used as a RP model with slow progressing rod degeneration. To interfere with HCN1 function, Cngb1 knockout (KO) mice were crossed with Hcn1 KO mice to generate Cngb1/Hcn1 double KO (DKO). In addition, Cngb1 KO mice were treated with the HCN inhibitor Zatebradine. The effects of genetic or pharmacological ablation of HCN1 on rod physiology and survival were measured ex vivo by electrophysiological measurements and histological methods and in vivo by optical coherence tomography.

Results: We monitored the progression of rod degeneration in Cngb1 KO and Cngb1/Hcn1 DKO mice over several months and found that lack of HCN1 significantly accelerates photoreceptor degeneration in Cngb1 KO mice. In contrast, Hcn1 KO mice show no signs of retinal degeneration. Accordingly, pharmacological inhibition of HCN1 with Zatebradine led to enhanced rod degeneration in Cngb1 KO mice but not in wild type mice. The membrane potentials of Cngb1 KO and Cngb1/Hcn1 DKO rods were significantly depolarized compared to what would be expected in rods whose dark current is compromised. As a consequence, any difference in membrane potential between KO and DKO rods would be challenging to quantify, but predicted to be small. In vivo experiments and in situ calpain activity assays suggest that altered calcium homeostasis might underlie the mechanism for accelerated rod degeneration in Cngb1/Hcn1 DKO mice.

Conclusions: Our results implicate HCN1 as a novel and major modifier of photoreceptor degeneration in RP and suggest that pharmacological inhibition of HCN channels might accelerate disease progression in RP patients.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×