June 2015
Volume 56, Issue 7
ARVO Annual Meeting Abstract  |   June 2015
Presenilins control the intracellular calcium signaling and viability of retinal neurons
Author Affiliations & Notes
  • Peter Koulen
    Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, Kansas City, MO
    Department of Basic Medical Science, University of Missouri - Kansas City, School of Medicine, Kansas City, MO
  • Footnotes
    Commercial Relationships Peter Koulen, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 5435. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Peter Koulen; Presenilins control the intracellular calcium signaling and viability of retinal neurons. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):5435.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Purpose: The loss of visual function in optic neuropathies resulting from injury or chronic disease is characterized by the degeneration and cell death of retinal ganglion cells (RGCs). As the programmed cell death of RGCs in degenerative retinopathies is preceded by L-glutamate mediated excitotoxicity, subsequent cellular calcium dyshomeostasis and toxicity mediated by chronically elevated intracellular calcium concentrations, control of these signaling pathways has become the target of related therapy development efforts. Presenilin proteins, in addition to their function in the enzymatic processing of amyloid precursor protein, control the intracellular free calcium ion concentration by interaction with intracellular calcium release channels. The present study tested the hypothesis that modulation of the presenilin protein concentration in RGCs leads to protection against excitotoxicity.

Methods: Murine RGCs and retinal explants were isolated and cultured and their cellular viability was measured in response to chronic L-glutamate-mediated toxicity using immunocytochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The concentration of presenilin 1 and 2 proteins in the cell cultures was altered using mammalian expression vectors and gene-specific small interfering RNA and determined with microfluorimetry. Changes in intracellular calcium signaling were measured using calcium imaging and pharmacological control of intracellular calcium channel activity.

Results: Both presenilin 1 and 2 are expressed by RGCs. siRNA-mediated knockdown of presenilin 1 significantly (p<0.001) increased viability of both isolated cultured RGCs and of organotypic cultures by 43±9% and 59±12%, respectively. This was paralleled by statistically significantly (p<0.01) attenuated calcium release from intracellular stores at 38±12% and 46±17%, respectively. Overexpression of presenilin 1 elicited potentiated calcium release from intracellular stores and decreased viability of RGCs. Modulation of presenilin 2 generated similar responses.

Conclusions: Presenilins control calcium release from intracellular stores and thereby affect cellular viability as a function of cellular calcium dyshomeostasis following injury or resulting from disease processes. These mechanisms of action therefore represent novel potential targets for therapeutic intervention and drug development in optic neuropathies.


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.