June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Artificial Intelligence Methods are robust and useful techniques to classify optic nerve fibers using its morphometric parameters
Author Affiliations & Notes
  • Joaquin De Juan
    Biotechnology, Universidad de Alicante, San Vicente del Raspeig, Spain
  • Jose Luis Girela
    Biotechnology, Universidad de Alicante, Alicante, Spain
  • David Gil
    Computer Technology, Universidad de Alicante, Alicante, Spain
  • Noemi Martínez-Ruiz
    Biotechnology, Universidad de Alicante, Alicante, Spain
  • Jorge Azorin
    Computer Technology, Universidad de Alicante, Alicante, Spain
  • Bassima Boughlala
    Biotechnology, Universidad de Alicante, Alicante, Spain
  • Footnotes
    Commercial Relationships Joaquin De Juan, None; Jose Girela, None; David Gil, None; Noemi Martínez-Ruiz, None; Jorge Azorin, None; Bassima Boughlala, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 5549. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Joaquin De Juan, Jose Luis Girela, David Gil, Noemi Martínez-Ruiz, Jorge Azorin, Bassima Boughlala; Artificial Intelligence Methods are robust and useful techniques to classify optic nerve fibers using its morphometric parameters. Invest. Ophthalmol. Vis. Sci. 2015;56(7 ):5549.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: The rat optic nerve axons come from the retinal ganglion cells. Only a few of them have their origin in the pretectal area. The diameters of the optic nerve axons are far from being a homogeneous population. There are at least three main groups of ganglion cells in rat retinas and three different axon types in the rat optic nerve. The morphometric study of optic nerve fibers is a useful tool to research the function, development, aging and pathological conditions of them. Thus, classification of the optic nerve axons is crucial in order to make experimental comparisons. The aim of this work is to classify the optic nerve axons by analyzing their ultrastructural parameters with Artificial Intelligence (AI) methods.

Methods: Adult albino Wistar rats were anesthetized, transcardially perfused and its optic nerves removed and processed for ultrastructural microscopy studies. Optic nerve axons were analyzed with a computer-linked planimeter. Several parameter, were obtained for each axonal cross-section using a computer program. The parameters were: axon diameter, axon area, myelin sheath thickness, G-Ratio, microtubule number (MTn), neurofilament number (NFn) and R-proportion (R = NFn/[NFn+MTn]). Data were processed with a set of AI methods, two supervised techniques, Multilayer Perceptron (MLP) and Decision Trees (DT), and other unsupervised one, K-Means clustering. All the computations of the decision tree were developed using the WEKA software (Machine Learning Group at the University of Waikato).

Results: Using k-means clustering analysis we were able to identify three different groups of fibers in the optic nerve, which are consistent with the results obtained in functional studies. The main parameters that allowed us the classification of optical nerve fibers were axon diameter, G-Ratio, and R-proportion. Using these parameters, we analyzed the classification accuracy of MLP and DT, as tools to develop an automated system. In both cases, the Classification Accuracy was above 95%, being higher with the MLP technique that reached a 98.9% of accuracy.

Conclusions: Results show that morphometric parameters can be used to identify different populations of nerve fibers, with a high accuracy when AI methods are used. Only a limited number of parameters are needed to produce a consistent classification. The MLP technique is the most useful.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×