Purpose
OCT based functional microangiography of the retina requires high speed acquisition of a large number of volumetric datasets. Imaging speed of conventional scanning OCT devices is limited by the applicable radiant power and the mechanics used to scan the focused beam over the desired field of view. Full-Field Swept-Source OCT (FF-SS-OCT) resolves both issues, using an areal illumination, which dramatically increases the allowed amount of radiation, and an ultrafast camera for a highly parallelized acquisition.
Methods
The retina of healthy volunteers was illuminated with wavelengths between 816 and 867 nm by the extended beam of a tunable laser (Broadsweeper, Superlum). Retinal irradiance was below the maximum permissable exposure (MPE). Light backscattered from the retina was imaged onto an ultrafast CMOS camera (SA-Z, Photron), where it interfered with an extended reference beam. From a series of interference images at different wavelengths, volumetric OCT images of the retina were reconstructed.
Results
We demonstrate in vivo retinal imaging at 9.9 billion voxels per second (40 million A-scans/s with 256 axial pixels). Sacrificing depth resolution by reducing the number of axial pixels, the A-scan rate was increased to more than 1 billion A-scans per second. FF-SS-OCT allowed imaging of all important retinal structures with good quality at unprecedented imaging speed (see fig. 1). Fast volumetric imaging at up to 3000 volumes/s was used to visualize small capillaries and to analyze the pulsation of retinal arteries and veins (see fig. 2). Imaging time for an area of 4 mm x 2 mm (896 x 368 A-scans) was only 316 µs. The high volume rate and the inherent phase stability enabled quantitative measurement of the change of retinal thickness due to blood pulsation with approx. 10 nm precision. A delay of the venous pulsation with respect to the arteries was observed (approx. 11 ms). The amplitudes of higher frequency components of the venous pulsation were considerably attenuated.
Conclusions
FF-SS-OCT provides fast volumetric imaging of the retina with good image quality. The capillary network can be analyzed with high spatial and temporal resolution. Analysis of retinal pulsation may provide information on pathological changes of vessels and capillaries.