June 2015
Volume 56, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2015
Author Affiliations & Notes
  • Eduardo Fernandez
    Instituto de Bioingenieria, Univ of Miguel Hernandez, Elche, Spain
    Neural Engineering, CIBER BBN, Madrid, Spain
  • Arantxa Alfaro
    Neural Engineering, CIBER BBN, Madrid, Spain
    Hospital Vega Baja, Orihuela, Spain
  • Rafael Toledano
    Hospital Ruber International, Madrid, Spain
  • Julio Albisua
    Fundacion Jimenez Díaz, Madrid, Spain
  • Alejandro García
    Instituto de Bioingenieria, Univ of Miguel Hernandez, Elche, Spain
  • Footnotes
    Commercial Relationships Eduardo Fernandez, None; Arantxa Alfaro, None; Rafael Toledano, None; Julio Albisua, None; Alejandro García, None
  • Footnotes
    Support None
Investigative Ophthalmology & Visual Science June 2015, Vol.56, 777. doi:
Abstract

Purpose: Appropriate delivery of electrical stimulation to visual structures can evoke patterned sensations of light, called technically phosphenes. This pivotal finding settled the physiological basis for present efforts to develop a visual prosthesis for the blind. Here we aim to study the visual perceptions elicited by electrical stimulation of human visual cortex.

Methods: Electrical stimulation of occipital cortex was performed in patients with a diagnosis of intractable epilepsy that had to undergo a surgical resection. Electrical stimulation was applied through implanted subdural electrodes or using penetrating micro-electrodes. Electrical stimulation was applied using a biphasic neurostimulator. For mapping the visual perceptions we used a wireless system including an autofocus infrared (IR) camera and one IR projector. After each electrical stimulation, subjects were asked to make drawings of the perceptions with particular emphasis on the size, main features and localization within the visual field. A customized program allowed easy registration and analysis of collected data.

Results: All study subjects perceived phosphenes and tolerated the procedure without complications. The probability of detecting phosphenes or scotoma varied with the position of the electrodes. Most of the phosphenes were circular or dotted and appeared in the visual field contralateral to the cerebral hemisphere stimulated. Stimulation of early visual areas induced visual perceptions but stimulation of extrastriate occipital cortex was also able to induce phosphenes with retinotopic representation. Furthermore our procedure allowed an easy calculation of the position and area of the subjective perceptions from the coordinates of the drawings.

Conclusions: Electrical stimulation of visual areas in humans provides a unique opportunity to study the qualitative properties of induced perceptions, which can offer insights about the functional organization of human visual cortex and help to the development new rehabilitative strategies for profoundly blind based on multiple cortical microelectrodes.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×