March 2012
Volume 53, Issue 14
Free
ARVO Annual Meeting Abstract  |   March 2012
A Self-adaptive Wireless Transmission System Based on Visual Image Information For Visual Prostheses
Author Affiliations & Notes
  • Kaijie Wu
    School of Biomedical Engineering, Shanghai Jiao-Tong University, Shanghai, China
  • Xinyu Chai
    School of Biomedical Engineering, Shanghai Jiao-Tong University, Shanghai, China
  • Qiushi Ren
    School of Biomedical Engineering, Shanghai Jiao-Tong University, Shanghai, China
  • Yun Gu
    School of Biomedical Engineering, Shanghai Jiao-Tong University, Shanghai, China
  • Xuping Lei
    School of Biomedical Engineering, Shanghai Jiao-Tong University, Shanghai, China
  • Footnotes
    Commercial Relationships  Kaijie Wu, None; Xinyu Chai, None; Qiushi Ren, None; Yun Gu, None; Xuping Lei, None
  • Footnotes
    Support  China 973 Program:2011CB707503. The National Natural Science Foundation of China (60901026)
Investigative Ophthalmology & Visual Science March 2012, Vol.53, 291. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Kaijie Wu, Xinyu Chai, Qiushi Ren, Yun Gu, Xuping Lei; A Self-adaptive Wireless Transmission System Based on Visual Image Information For Visual Prostheses. Invest. Ophthalmol. Vis. Sci. 2012;53(14):291.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : The tread for enhancing the resolution of visual prostheses is to increasing the channels of neural stimulator. However, the power dissipation due to the electrode impedance of numerous channels will be also increasing inevitably. In fact, the power dissipation varies greatly with the complex of visual image. A novel self-adaptive RF system was designed to calculate the power requirement of neural stimulators based on the analyses of visual image information, and then transmit optimal power to internal micro-stimulator of visual prostheses.

Methods: : We developed a demonstration system combining image processing circuits, a Class E power amplifier and power-controlling circuits. Visual images were captured by a micro camera and processed into ones with low resolution and low gray level in a DSP using information-minimizing strategies. Then the processed images were encoded into data about amplitude and frequency of pulse current on each channel. Based on these data information and impedances of electrodes, power dissipation of a neural stimulator could be evaluated. According to evaluated power dissipation, power-controlling circuits adjusted the power supplier of the Class E power amplifier to change transmission power.

Results: : This wireless transmission system controlled its adjustable power supplier from 5V to 10V, providing a maximum power of 500mW. Based on analyses of visual image encoding, output power of the wireless transmission system changed obviously, timely and effectively. Overall transmission efficiency of the system, defined as rate of received micro-stimulator power to emission system power, remained steady.

Conclusions: : This self-adaptive system provided a novel method to adjust transmission power for micro-stimulator in visual prosthesis. Results showed that the RF system timely switched transmission power and thus maintained high transmission efficiency, which promoted usage duration in portable applications. This system was especially applicable to visual prostheses with large-scale micro-electrode array.

Keywords: visual fields • accommodation 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×