March 2012
Volume 53, Issue 14
Free
ARVO Annual Meeting Abstract  |   March 2012
Transportation Simulations Of Cultured Human Limbal Epithelial Cells Subjected To Eye-bank Storage
Author Affiliations & Notes
  • Tor P. Utheim
    Center for Clinical Research, Oslo University Hospital, Oslo, Norway
  • Øygunn A. Utheim
    Center for Clinical Research, Oslo University Hospital, Oslo, Norway
  • Jon Roger Eidet
    Center for Clinical Research, Oslo University Hospital, Oslo, Norway
  • Maria de La Paz
    El centro de Oftalmología Barraquer, Barcelona, Spain
  • Edward Messelt
    Institute for Oral Biology,
    University of Oslo, Oslo, Norway
  • Borghild Roald
    Department of Pathology,
    University of Oslo, Oslo, Norway
  • Darlene A. Dartt
    Schepens Eye Research Institute, Boston, Massachusetts
  • Torstein Lyberg
    Center for Clinical Research, Oslo University Hospital, Oslo, Norway
  • Footnotes
    Commercial Relationships  Tor P. Utheim, Inven2 AS (P); Øygunn A. Utheim, None; Jon Roger Eidet, None; Maria de La Paz, None; Edward Messelt, None; Borghild Roald, None; Darlene A. Dartt, None; Torstein Lyberg, None
  • Footnotes
    Support  Norwegian Health Region South East
Investigative Ophthalmology & Visual Science March 2012, Vol.53, 1839. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Tor P. Utheim, Øygunn A. Utheim, Jon Roger Eidet, Maria de La Paz, Edward Messelt, Borghild Roald, Darlene A. Dartt, Torstein Lyberg; Transportation Simulations Of Cultured Human Limbal Epithelial Cells Subjected To Eye-bank Storage. Invest. Ophthalmol. Vis. Sci. 2012;53(14):1839.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : The aim of the present study is to investigate the effects of transportation simulations on the morphology, phenotype and viability of cultured human limbal epithelial cells (HLEC) subjected to four days of storage at 23°C. Reliable methods for cell transportation are becoming increasingly more important with the centralization of production units, due in part to strict regulatory demands imposed on tissue laboratories.

Methods: : HLEC cultured for 3 weeks were transferred to closed glass containers. The cultures were divided into five experimental groups, and all were subjected to four days of storage at 23°C in HEPES buffered Minimal Essential Medium (MEM) supplemented with antibiotics. Storage bottles containing cultured HLEC were completely filled with medium for groups 1-3 and 5, but for group 4 they were only ¾ full. Pluronic F-68, a water-soluble triblock copolymer with shear protecting properties, was added to the medium in group 5. Transportation simulations were initiated after 3 hours of storage. In group 1 (control group) HLEC cultures were stored but were not subjected to transportation simulations. In group 2 cultures were stored and agitated for 6 h at 200 rotations per minute (rpm) using an orbital shaker. HLEC cultures in groups 3, 4 and 5 were stored and subjected to orbital shaking at 200 rpm for 36 h. Cell morphology and phenotype were analysed by light microscopy and immunohistochemistry, respectively. A calcein-acetoxymethyl ester/ethidium homodimer-1 assay was used to assess cell viability.

Results: : HLEC morphology appeared unchanged in all but group 4, where the number of desmosomes and hemidesmosomes was significantly lower than the other groups. The number of cell layers (2.8 - 3.5), cell viability (96.4% - 97.5%), and cell phenotype (C/EBPβ, ABCG2, deltaNp63α, p63, Bmi-1, Caspase-3, Ck3, Ki67 and PCNA expression), did not demonstrate any significant differences between the five experimental groups.

Conclusions: : HLEC subjected to four days of storage at 23°C in HEPES-MEM are able to withstand long-term transportation simulations especially well when cell storage containers are completely filled with medium. We hypothesise that the lack of air above the medium in the container reduces mechanical stress, i.e. shearing forces exerted on cells.

Keywords: cornea: epithelium • cornea: storage • cell survival 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×