April 2011
Volume 52, Issue 14
Free
ARVO Annual Meeting Abstract  |   April 2011
Development of a Humanized Mouse Model for X-linked Retinitis Pigmentosa caused by a Point Mutation in the Rpgr Gene
Author Affiliations & Notes
  • Jutta U. Hosch
    Department of Ophthalmology,
    Justus-Liebig-University Giessen, Giessen, Germany
  • Stefan Günther
    Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
  • Thomas Braun
    Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
  • Alfred M. Pingoud
    Department of Biochemistry,
    Justus-Liebig-University Giessen, Giessen, Germany
  • Eveline Baumgart-Vogt
    Institute of Anatomy and Cell Biology,
    Justus-Liebig-University Giessen, Giessen, Germany
  • Birgit Lorenz
    Department of Ophthalmology,
    Justus-Liebig-University Giessen, Giessen, Germany
  • Knut Stieger
    Department of Ophthalmology,
    Justus-Liebig-University Giessen, Giessen, Germany
  • Footnotes
    Commercial Relationships  Jutta U. Hosch, None; Stefan Günther, None; Thomas Braun, None; Alfred M. Pingoud, None; Eveline Baumgart-Vogt, None; Birgit Lorenz, None; Knut Stieger, None
  • Footnotes
    Support  Supported by a research grant of the University Medical Center Giessen and Marburg
Investigative Ophthalmology & Visual Science April 2011, Vol.52, 2360. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jutta U. Hosch, Stefan Günther, Thomas Braun, Alfred M. Pingoud, Eveline Baumgart-Vogt, Birgit Lorenz, Knut Stieger; Development of a Humanized Mouse Model for X-linked Retinitis Pigmentosa caused by a Point Mutation in the Rpgr Gene. Invest. Ophthalmol. Vis. Sci. 2011;52(14):2360.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : Mutations in the gene encoding the retinitis pigmentosa GTPase regulator (RPGR) are the most frequent cause for X-linked RP (XLRP) in man. Most mutations can be found in a specific repetitive region of the retina-specific terminal exon open reading frame (ORF) 15. Point mutations in the ORF15 cause a frame shift, leading to a modified C-terminal amino acid chain and consequently a toxic gain of function of the altered protein. The purpose of this study was to develop a mouse model that contains a 1-bp deletion at position 2793 in RPGR-ORF15, representing a typical human mutation and inducing a change of the amino acids at the C-terminal end from the EG rich motif to the RK rich motif.

Methods: : The pathologic mutation and several silent point mutations were introduced into murine embryonic stem (ES) cells by homologous recombination using a targeting vector. In addition, an ISceI homing-endonuclease recognition site was introduced. Modified ES cells were injected into BL6 blastocytes and implanted into surrogate mother mice (Balb/c). F1 offspring was crossbred with Cre-deleter mice (BL6) and subsequently crossed into BL6 background. RNA expression analysis of the mutated allele, histology and immunohistochemistry were performed for initial phenotypic analysis at different time points after birth.

Results: : Two transgenic mouse lines (derived from clones 160 and 320) were established, which propagate the desired mutation within the ORF15, causing a shift from the GE rich motif to the RK rich motif at the protein level. The level of the RPGR-ORF15 splice variant mRNA in the retina remained unchanged. Histological analysis of the retina at 3 months showed a clear reduction in thickness of the photoreceptor and inner nuclear layers in affected animals compared to wild type control mice. Delocalized pycnotic nuclei within the inner and outer segments of the photoreceptors were observed.

Conclusions: : At 3 months, this humanized mouse model of XLRP shows definitive, yet moderate signs of retinal degeneration similar to the situation in humans. Therefore, it will be useful to gain further insight into the pathological mechanisms involved in the degenerative process and the biochemical reason for the toxicity of the altered protein. In addition, it will be possible to use the model for developing new therapeutic strategies for the treatment of XLRP in humans.

Keywords: pathology: experimental • retinal degenerations: hereditary • photoreceptors 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×