March 2012
Volume 53, Issue 14
Free
ARVO Annual Meeting Abstract  |   March 2012
Age-related Light Scattering Development in Non-Cataractous Lenses from Diabetic Patients and Possible Biochemical Mechanisms to Explain this Observation
Author Affiliations & Notes
  • Alfred R. Wegener
    Ophthalmology, University of Bonn, Bonn, Germany
  • Julia E. Kremer
    Private Practice, Troisdorf, Germany
  • Denise P. Reimnitz
    Ophthalmology, University of Bonn, Bonn, Germany
  • Heike E. Laser-Junga
    Ophthalmology, University of Bonn, Bonn, Germany
  • Roland Müller-Breitenkamp
    Private Practice, Bonn, Germany
  • Ursula Müller-Breitenkamp
    Private Practice, Bonn, Germany
  • Footnotes
    Commercial Relationships  Alfred R. Wegener, None; Julia E. Kremer, None; Denise P. Reimnitz, None; Heike E. Laser-Junga, None; Roland Müller-Breitenkamp, None; Ursula Müller-Breitenkamp, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science March 2012, Vol.53, 3049. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Alfred R. Wegener, Julia E. Kremer, Denise P. Reimnitz, Heike E. Laser-Junga, Roland Müller-Breitenkamp, Ursula Müller-Breitenkamp; Age-related Light Scattering Development in Non-Cataractous Lenses from Diabetic Patients and Possible Biochemical Mechanisms to Explain this Observation. Invest. Ophthalmol. Vis. Sci. 2012;53(14):3049.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : Investigation of age-related non-cataractous light scattering changes in lenses from diabetic patients treated with insulin or non-insulin oral anti-diabetic medication. Demonstration of potential sorbitol-pathway independent mechanisms for light scattering changes in diabetic lenses using an in-vitro assay.

Methods: : A total of 53 patients were enrolled into the study, 20 male patients (mean age 66,92 ± 10,37 years) and 33 female patients (mean age 68,85 ± 7,22 years). Out of these 24 were insulin treated and 29 patients were treated with oral anti-diabetic medication. Light scattering profiles of all patient lenses were recorded with a Topcon SL-45 Scheimpflug camera on BW film. The images were digitized and evaluated with image analytical software as previously described. For the investigation of glucose-related protein modifications in the lens, crystallin extracts from porcine lenses were incubated with varying concentrations of glucose over 48 h at 37°C and thereafter analyzed with 2D-PAGE and electro-blotting using specific antibodies to detect O-GlcNAc modified proteins.

Results: : Light scattering increase in all lens layers of the diabetic patients was significantly higher when compared to an age-matched cohort of non-diabetic healthy patients. In addition higher amounts of light scattering could be detected in layer 4 (anterior cortex) of diabetic patients treated with oral anti-diabetic medication, compared to those on insulin therapy. In-vitro incubation of porcine lens crystallins with varying concentrations of glucose demonstrated that especially βA1, βA4 and γIV crystallins are targets for O-GlcNAc modification, whereas α crystallins were no target for this process.

Conclusions: : Clinical data on light scattering in defined lens layers demonstrate that even under anti-diabetic therapy lens optical quality deteriorates more rapidly during aging in diabetic patients. In addition oral anti-diabetic medication is less effective than insulin in maintaining lens transparency in the cortex. The in-vitro assays for O-GlcNAc modification of lens proteins evidence distinct β- and γ-crystallins as targets for this modification which could explain why light scattering in the lens increases even under effective anti-diabetic therapy. This diabetic modification would be completely independent of the sorbitol pathway in the lens.

Keywords: cataract • crystallins • clinical (human) or epidemiologic studies: natural history 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×