March 2012
Volume 53, Issue 14
Free
ARVO Annual Meeting Abstract  |   March 2012
Exploring Cell Energetics in Refractive State and Ocular Volume Regulation
Author Affiliations & Notes
  • Melanie J. Murphy
    School of Psychological Science, La Trobe University, Melbourne, Australia
  • Jude Jayasuriya
    School of Psychological Science, La Trobe University, Melbourne, Australia
  • Loretta C. Giummarra
    School of Psychological Science, La Trobe University, Melbourne, Australia
  • Sheila G. Crewther
    School of Psychological Science, La Trobe University, Melbourne, Australia
  • Footnotes
    Commercial Relationships  Melanie J. Murphy, None; Jude Jayasuriya, None; Loretta C. Giummarra, None; Sheila G. Crewther, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science March 2012, Vol.53, 3453. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Melanie J. Murphy, Jude Jayasuriya, Loretta C. Giummarra, Sheila G. Crewther; Exploring Cell Energetics in Refractive State and Ocular Volume Regulation. Invest. Ophthalmol. Vis. Sci. 2012;53(14):3453.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : The mechanisms regulating the cell energetics pathways engaged to enable the rapid adjustment of ocular volume in response to optical defocus or image degradation have not been well characterized, despite the obvious need to maintain energy resources required for optimal function in the metabolically active retina. Thus, the current investigation examined the effect of inhibiting two aspects of energy supply pathways (NKATPase and Purinergic) on compensation to lens-induced defocus (LID) and form deprivation myopia (FDM).

Methods: : Chicks were raised for either 5 days with +10D or -10D LID after injection of Suramin (Purinergic) or Ouabain (NKATPase), or raised for 9 days with occluders to induce FDM under a 12/12 day/night cycle. Refractive compensation at 5 days, and recovery from FDM was assessed at 0, 6 and 24 hours post-occluder removal via retinoscopy and ultrasonography. Immunohistochemical analysis assessed changes in P2X7 and P2Y6 receptor expression based on genes identified as being altered following FDM by microarray (Affymatrix) analysis (Pathway Studios, Ariadne Genomics Inc.).

Results: : Eyes injected with Ouabain to inhibit the NKATPase receptor showed reduced compensation to LID in both defocus groups and slight ocular elongation. Suramin, a purinergic receptor antagonist, differentially effected compensation and ocular growth to LID by allowing some compensation to positive defocus. Eyes with FDM showed a rapid decline in the degree of myopia, and a reduction in ocular volume over time. Alterations in P2X7 and P2Y6 receptor expression were observed in the nerve fibre layer, sublamina A and B of the inner nuclear layer and the outer retina.

Conclusions: : Changes in purinergic receptor expression in association with drug inhibition and alterations in ocular volume following refractive compensation or recovery from FDM highlight the involvement of mechanisms typically associated with the regulation of, and adaptation to, physiological stress. These results illustrate that energy mechanisms of the retina may be redirected towards facilitating the rapid growth response to defocus, which may have consequences for more severe ocular pathologies.

Keywords: myopia • pathology: experimental • gene/expression 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×