April 2011
Volume 52, Issue 14
Free
ARVO Annual Meeting Abstract  |   April 2011
The Use Of LQ Control To Optimize The Dynamic Behavior Of An Electromagnetic Deformable Mirror For Ophthalmic Applications
Author Affiliations & Notes
  • Erika Odlund
    Imagine Eyes, Orsay, France
    Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury, United Kingdom
  • Caroline Kulcsár
    Laboratoire de Traitement et Transport de l’Information, Institut Galilée,, Université Paris 13, Villetaneuse, France
  • Henri-François Raynaud
    Laboratoire de Traitement et Transport de l’Information, Institut Galilée,, Université Paris 13, Villetaneuse, France
  • Xavier Levecq
    Imagine Eyes, Orsay, France
  • Adrian G. Podoleanu
    Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury, United Kingdom
  • Footnotes
    Commercial Relationships  Erika Odlund, Imagine Eyes (E); Caroline Kulcsár, None; Henri-François Raynaud, None; Xavier Levecq, Imagine Eyes (E); Adrian G. Podoleanu, None
  • Footnotes
    Support  MC-EST project 20353 HIRESOMI, ANR-09-TECS-009 iPhot
Investigative Ophthalmology & Visual Science April 2011, Vol.52, 4057. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Erika Odlund, Caroline Kulcsár, Henri-François Raynaud, Xavier Levecq, Adrian G. Podoleanu; The Use Of LQ Control To Optimize The Dynamic Behavior Of An Electromagnetic Deformable Mirror For Ophthalmic Applications. Invest. Ophthalmol. Vis. Sci. 2011;52(14):4057.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : The purpose of this study is to design and validate a linear quadratic (LQ) control to improve the temporal performance of a deformable mirror (DM) used in ophthalmic applications, such as retinal imaging. The control is developed using a high speed adaptive optics (AO) test bench with a sampling frequency of 10 kHz. In previous work, the same test bench has successfully been used to develop a reference model for the control of a single DM actuator.

Methods: : The membrane motion of the electromagnetic mirao52-e DM (Imagine Eyes, France) was measured using a high-speed, open-loop adaptive optics (AO) test bench with a variable sampling frequency up to 10 kHz, whilst using a wavefront sensor (WFS) whose acquisition rate is approximately 60 Hz, HASO-eye WFS (Imagine Optic, France). The high sampling frequency was made possible through repetitive application of DM signals and stroboscopic wavefront measurements. The actuators were classified in distinct groups depending on their placement on the mirror’s pupil. The step response of the mirror membrane expressed in wavefront root mean square (RMS) error was studied for each group and system identification methods were used to create state-space models of the actuators’ responses. Based on these models, LQ controls with varied criteria for optimality were developed using Simulink software, and evaluated with the high-speed test bench.

Results: : The LQ control were implemented for the distinct groups of actuators separately, and when correcting for current ocular aberrations such as astigmatism and defocus. An important gain in terms of stability was observed relative to operation without LQ control. The most efficient strategy proved to be discrete time LQ control, where the continuous-time state-space models were made discrete to respect the characteristics of the DM electronics.

Conclusions: : The proposed method enabled dynamic characterization of a DM using a WFS capable of measuring large aberrations with high accuracy. Detailed knowledge of the system allowed accurate modeling of the DMs’ dynamic behavior. Powerful controls were implemented to adjust the temporal performance of the DM.Such a dynamic DM model can also be integrated in a complete AO closed loop model in order to optimize the global performance of an AO system.

Keywords: imaging methods (CT, FA, ICG, MRI, OCT, RTA, SLO, ultrasound) • aberrations • retina 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×