April 2011
Volume 52, Issue 14
Free
ARVO Annual Meeting Abstract  |   April 2011
Topographic Effect of Micro/Nanoengineered Polymer Substrates on Cultured Trabecular Meshwork Cells
Author Affiliations & Notes
  • Bongsu Kim
    Biomedical Engineering / Ophthalmology, The Ohio State University, Columbus, Ohio
  • Cynthia J. Roberts
    Biomedical Engineering / Ophthalmology, The Ohio State University, Columbus, Ohio
  • Ashraf M. Mahmoud
    Biomedical Engineering / Ophthalmology, The Ohio State University, Columbus, Ohio
  • Deborah M. Grzybowski
    Biomedical Engineering / Ophthalmology, The Ohio State University, Columbus, Ohio
  • Paul A. Weber
    Biomedical Engineering / Ophthalmology, The Ohio State University, Columbus, Ohio
  • Zhao Yi
    Biomedical Engineering / Ophthalmology, The Ohio State University, Columbus, Ohio
  • Footnotes
    Commercial Relationships  Bongsu Kim, None; Cynthia J. Roberts, None; Ashraf M. Mahmoud, None; Deborah M. Grzybowski, None; Paul A. Weber, None; Zhao Yi, None
  • Footnotes
    Support  Glaucoma Research Foundation / OSU Ophthalmology
Investigative Ophthalmology & Visual Science April 2011, Vol.52, 4666. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Bongsu Kim, Cynthia J. Roberts, Ashraf M. Mahmoud, Deborah M. Grzybowski, Paul A. Weber, Zhao Yi; Topographic Effect of Micro/Nanoengineered Polymer Substrates on Cultured Trabecular Meshwork Cells. Invest. Ophthalmol. Vis. Sci. 2011;52(14):4666.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract
 
Purpose:
 

To investigate the response of trabecular meshwork (TM) endothelial cells to topographically different microstructures and electrospun nanofibers. The topographic effect of the substrates is investigated by quantification of myocilin expression. It is hypothesized that the expression level of myocilin is altered depending on the orientation or scale of the interacting surface of the substrates.

 
Methods:
 

Two non-aligned and 2 aligned substrate groups, with one microscale and nanoscale substrate in each group, are investigated relative to a flat surface control. The former consists of 1)microbubble surface and 2)randomly electrospun nanofibers. The latter includes 1)linear microstructures, 2)aligned electrospun nanofibers. A combined micro/nano scale substrate that consists of microstructured electrospun nanofibers is investigated. Poly(etherurethane)urea (PEUU) solution is cured to make a flat surface. A microbubble pattern on the surface is obtained after dissolving KCl crystals on cured flat surfaces. A linear PEUU microstructure is molded by soft lithography. Randomly electrospun fibers are collected on a flat conductive surface by electrospinning. Aligned electrospun fibers are achieved on a rotating collector surface. Microstructured random electrospun fibers are created by using micropatterned electrodes on the collector chip. Three donor eyes are used and western blot is performed three times for each donor. T-tests are performed in SAS with a Bonferroni correction for multiple comparisons.

 
Results:
 

Myocilin expression is significantly greater with P≤0.005 in non-aligned group compared to aligned group. Myocilin expression on microstructure PEUU substrate is statistically less than any other single-scale pattern investigated with P≤0.005. Therefore, the orientation effect on myocilin expression is evident in microscale substrates, while the level of myocilin expression is not significantly different based on orientation in nanoscale substrates. In addition, the combined effect of micro and nanoscale of microstructure electrospun fibers is less important compared to individual structure.

 
Conclusions:
 

This work shows the topographic parameters of scaffolds can determine cellular characteristics such as the level of protein expression. Topographically random and nanoscale structure are more favorable conditions in TM cell research. Therefore, it will be critical that scaffolds require morphological similarity with natural TM tissue for systematic TM cell study.

 
Keywords: trabecular meshwork • topography • extracellular matrix 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×