March 2012
Volume 53, Issue 14
Free
ARVO Annual Meeting Abstract  |   March 2012
The Synaptic Basis of Rod-Cone Pathway Interactions
Author Affiliations & Notes
  • Robert E. Marc
    Ophthalmology-Sch of Med, Univ of Utah/Moran Eye Center, Salt Lake City, Utah
  • J. Scott Lauritzen
    Ophthalmology-Sch of Med, Univ of Utah/Moran Eye Center, Salt Lake City, Utah
  • Bryan W. Jones
    Ophthalmology-Sch of Med, Univ of Utah/Moran Eye Center, Salt Lake City, Utah
  • Carl B. Watt
    Ophthalmology-Sch of Med, Univ of Utah/Moran Eye Center, Salt Lake City, Utah
  • James R. Anderson
    Ophthalmology-Sch of Med, Univ of Utah/Moran Eye Center, Salt Lake City, Utah
  • Footnotes
    Commercial Relationships  Robert E. Marc, Signature Immunologics, Inc. (E); J. Scott Lauritzen, None; Bryan W. Jones, None; Carl B. Watt, None; James R. Anderson, None
  • Footnotes
    Support  NIH Grants EY02576, EY015128, EY014800 Vision Core, NSF 0941717 (RM); RPB Career Dev Award, Thome Memorial Foundation grant for ARMD Research (BWJ); RPB unrestricted award (Moran Eye Center)
Investigative Ophthalmology & Visual Science March 2012, Vol.53, 6324. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Robert E. Marc, J. Scott Lauritzen, Bryan W. Jones, Carl B. Watt, James R. Anderson; The Synaptic Basis of Rod-Cone Pathway Interactions. Invest. Ophthalmol. Vis. Sci. 2012;53(14):6324.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : Transitions between scotopic and photopic switch seem smooth, but psychophysical dissection reveals that it is underpinned by mutual rod-cone suppression processes. Further, rod and cone signals mix to generate shifted spectral percepts. The neural architecture supporting these processes has resisted discovery.

Methods: : Multiple amacrine cell (AC) networks connecting 70 rod and >100 cone bipolar cells (BCs), 30 A-II and 20 A-I ACs were traced in the ultrastructural rabbit retinal connectome RC1, annotated with the Viking viewer, and explored by 3D rendering and graph visualization of connectivity (Anderson et al. 2011. The Viking Viewer. J Microscopy). RC1 contains embedded small molecule signals, enabling complete cellular classification independent of network identity.

Results: : Multiple GABAergic AC pathways connect rod and cone BCs. (1) Certain wide-field GABAergic ACs are reciprocal feedback elements at every ON cone BC they encounter, but also collect rod BC input enabling rod suppression of cone signals. (2) Conversely, A-I(S2) ACs are reciprocal feedback ACs at rod BCs but are also presynaptic to some ON cone BCs, also enabling rod suppression of cone signals. (3) Every rod BC receives inhibitory input from GABAergic ACs driven directly by ON or OFF cone BCs. Instances of ON glycinergic AC > rod BC inhibition also exist. (4) Every A-I AC receives massive inhibition via OFF cone BC > OFF cone AC > A-I chains (Fig. 1). (5) Every A-II AC receives inhibitory input from multiple cone BC driven ACs. (6) A-II amacrine cells collect ribbon input signals from wide-field ON cone BCs.

Conclusions: : The mammalian retina appears to use ACs to create a winner-take all architecture for rod and cone bipolar cells. When rod responsivity exceeds cones, multiple inhibitory networks further suppress the cone pathway output, and vice versa. Four primary synaptic chains support this process:Rod BCs > GABAergic ACs > ON and OFF Cone BCsON and OFF Cone BCs > GABAergic ACs > Rod BCsON and OFF Cone BCs > GABAergic ACs > A-II ACsOFF Cone BCs > GABAergic ACs > A-I ACs > Rod BCsRod signals directly mix with cone signals via A-II cells potentially driving color shifts. If the wide-field BCs of the rabbit retina are blue-dominated, this may explain blue-biased hue shifts near rod threshold.

Keywords: retinal connections, networks, circuitry • bipolar cells • amacrine cells 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×