April 2011
Volume 52, Issue 14
Free
ARVO Annual Meeting Abstract  |   April 2011
Gaussian Wavelet Transform and Classifier To Reliably Estimate Latency Of Multifocal Visual Evoked Potentials (mfVEP)
Author Affiliations & Notes
  • Johnson Thie
    Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
  • Prema Sriram
    Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
  • Alexander Klistorner
    Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
  • Stuart L. Graham
    Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
  • Footnotes
    Commercial Relationships  Johnson Thie, None; Prema Sriram, None; Alexander Klistorner, None; Stuart L. Graham, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science April 2011, Vol.52, 6088. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Johnson Thie, Prema Sriram, Alexander Klistorner, Stuart L. Graham; Gaussian Wavelet Transform and Classifier To Reliably Estimate Latency Of Multifocal Visual Evoked Potentials (mfVEP). Invest. Ophthalmol. Vis. Sci. 2011;52(14):6088.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : To develop an optimal method for estimating latency of mfVEP using Gaussian wavelet transform and a classifier to first discard noisy signals. The classifier avoids the need for manual inspection. Reproducibly identifying mfVEP peaks has previously posed a problem which limits clinical applications.

Methods: : mfVEPs were recorded from 10 normal subjects in 2 sessions 1 week apart. Two bipolar electrodes were placed 2.5 cm above the inion and 4.5 cm below. The stimulus was cortically scaled pattern-reversal checkerboard of 24 sectors (3 rings). Initially, each mfVEP sectoral trace was inspected and noisy sectors were discarded. The first 280ms was then cross-correlated with 2nd order Gaussian wavelets centered at 120ms. Latency of the mfVEP corresponded to timing of the largest peak from the cross-correlation, offset by 120ms. Secondly an algorithm to classify noisy mfVEP was developed. Ten leave-one-out (LOO) cases were created according to subjects. In each LOO case, a classifier to detect noisy signals was trained on nine subjects (training) and classified the left-out subject (test). Each mfVEP was transformed to 35 features and various combinations of 3 features were generated yielding 6545 feature sets. For each set, the training data was split into training and validation for LOO classification. One-way MANOVA was applied on each feature set from the training data yielding canonical eigenvectors to classify the validation data. ROC curve and its area-under-the-curve were evaluated. Feature sets that corresponded to the top 10% area-under-the-curve were selected. The final classifier selected the top 3 features. The test mfVEPs that were classified as not noisy in both recording sessions were fed to the wavelet-based algorithm to measure their latency.

Results: : Using the wavelet-based algorithm on the manually inspected mfVEPs, the smallest inter-session difference in latency is 2.6+/-2.5ms which corresponds to the peak at 112+/-6.8ms. The LOO classifications identify signal-noise-ratio, magnitude at 8-12 Hz and noise magnitude as the top 3 features. The mean classification success rate is 92%. The resulting inter-session difference of the test mfVEPs is -0.4+/-7.6ms. The corresponding peak is at 109+/-10.5ms.

Conclusions: : The algorithm based on cross-correlation with 2nd order Gaussian wavelets can estimate latency of mfVEP with very low inter-session variability. The proposed classifier algorithm can detect noisy mfVEP successfully. The resulting latency also has low inter-session variability.

Keywords: electrophysiology: non-clinical • neuro-ophthalmology: optic nerve • visual cortex 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×