April 2009
Volume 50, Issue 13
Free
ARVO Annual Meeting Abstract  |   April 2009
Lysyl Oxidase-Like 1 (LOXL1) and Elastic Microfibrils Are Regulated by Pathogenetic Factors Involved in Pseudoexfoliation Syndrome
Author Affiliations & Notes
  • M. Zenkel
    Department of Ophthalmology, University of Erlangen Nuernberg, Erlangen, Germany
  • F. E. Kruse
    Department of Ophthalmology, University of Erlangen Nuernberg, Erlangen, Germany
  • K. Bitterer
    Department of Ophthalmology, University of Erlangen Nuernberg, Erlangen, Germany
  • A. G. Junemann
    Department of Ophthalmology, University of Erlangen Nuernberg, Erlangen, Germany
  • G. O. H. Naumann
    Department of Ophthalmology, University of Erlangen Nuernberg, Erlangen, Germany
  • U. Schlotzer-Schrehardt
    Department of Ophthalmology, University of Erlangen Nuernberg, Erlangen, Germany
  • Footnotes
    Commercial Relationships  M. Zenkel, None; F.E. Kruse, None; K. Bitterer, None; A.G. Junemann, None; G.O.H. Naumann, None; U. Schlotzer-Schrehardt, None.
  • Footnotes
    Support  German Research Foundation (SFB 539)
Investigative Ophthalmology & Visual Science April 2009, Vol.50, 889. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      M. Zenkel, F. E. Kruse, K. Bitterer, A. G. Junemann, G. O. H. Naumann, U. Schlotzer-Schrehardt; Lysyl Oxidase-Like 1 (LOXL1) and Elastic Microfibrils Are Regulated by Pathogenetic Factors Involved in Pseudoexfoliation Syndrome. Invest. Ophthalmol. Vis. Sci. 2009;50(13):889.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : Genetic variation in the lysyl oxidase-like 1 (LOXL1) gene has been identified as the principal genetic risk factor for pseudoexfoliation (PEX) syndrome and glaucoma. However, additional genetic and/or external factors are required for the phenotypic manifestation of PEX syndrome. The aim of this study was to analyze the effect of various PEX-associated fibrogenic stimuli on the expression of LOXL1 and elastic microfibrillar components in vitro.

Methods: : Cultured human Tenon’s capsule fibroblasts obtained from patients with PEX syndrome were exposed to stimuli, such as TGF-ß1 (0.1-10 ng/ml), IL-6 (1-50 ng/ml), homocysteine (1-500 µM), oxidative stress (25-500 µM H2O2) or hypoxia (3% oxygen) for up to 48h. The mRNA expression and protein secretion of both LOXL1 and elastic microfibrillar components (fibrillin-1, -2, latent transforming growth factor binding protein (LTBP) -1, -2, and fibulin-1, -2) were analyzed using quantitative real-time PCR and Western blot analysis of cell culture supernatants.

Results: : Pathogenetic stimuli, which are known to be involved in the PEX process, were found to regulate both mRNA and protein expression of LOXL1 as well as elastic fiber components in human Tenon’s capsule fibroblasts in a time and dose dependent manner. As compared to controls, the mRNA expression and secretion of LOXL1 was significantly upregulated by TGF-ß1 (up to 3-fold; p<0.01), oxidative stress (up to 4-fold; p<0.005), and hypoxia (up to 6-fold; p<0.001), whereas homocysteine and IL-6 had no effect. Fibrillin-1, LTBP-1 and LTBP-2, the main elastic components of PEX material, were upregulated in parallel with LOXL1 on the mRNA and protein level in response to TGF-ß1 and oxidative stress (up to 3-fold; p<0.001). In contrast, hypoxia and IL-6 did not affect the mRNA or protein expression of elastic microfibrillar components.

Conclusions: : Our data suggest that the abnormal matrix process characteristic of PEX syndrome may be activated by certain fibrogenic stimuli, such as TGF-ß1, oxidative stress, and hypoxia, all of them being present in PEX eyes, and in the background of a specific LOXL1 genotype, may lead to the formation and aggregation of the elastotic PEX material.

Keywords: extracellular matrix • pathology: human • proteins encoded by disease genes 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×