April 2009
Volume 50, Issue 13
Free
ARVO Annual Meeting Abstract  |   April 2009
Localization of the ER-protein Wolframin (Wolfram syndrome 1-WFS1) in the Mouse Retina
Author Affiliations & Notes
  • R. G. Schmidt-Kastner
    College of Biomedical Science,
    Florida Atlantic University, Boca Raton, Florida
  • D. Reis
    College of Biomedical Science,
    Florida Atlantic University, Boca Raton, Florida
  • M. Preising
    Dept. of Ophthalmology, Universitaetsklinikum Giessen and Marburg GmbH, Giessen, Germany
  • J. Blanks
    College of Science,
    Florida Atlantic University, Boca Raton, Florida
  • C. K. Dorey
    College of Biomedical Science,
    Florida Atlantic University, Boca Raton, Florida
  • Footnotes
    Commercial Relationships  R.G. Schmidt-Kastner, None; D. Reis, None; M. Preising, None; J. Blanks, None; C.K. Dorey, None.
  • Footnotes
    Support  Startup Funds from FAU College of Biomedical Science and NIH grant 1R15EY018947-01 (CKD) and R03 EYO16119 (JB)
Investigative Ophthalmology & Visual Science April 2009, Vol.50, 2143. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      R. G. Schmidt-Kastner, D. Reis, M. Preising, J. Blanks, C. K. Dorey; Localization of the ER-protein Wolframin (Wolfram syndrome 1-WFS1) in the Mouse Retina. Invest. Ophthalmol. Vis. Sci. 2009;50(13):2143.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : WFS1/wolframin mutations cause the rare Wolfram syndrome 1 (OMIM 606201), associated with optic nerve atrophy, diabetes mellitus, diabetes insipidus and hearing loss. Wolframin is expressed in the endoplasmic reticulum (ER) whereas optic nerve atrophy is usually associated with mitochondrial failure. Wolframin influences Ca2+ fluxes in ER, interacts with Atp1b1 (Na-K-ATPase), regulates BANK1 (linked to IP3 receptor), and participates in the ER stress response. Previously, we localized wolframin to monkey and human retinal ganglion cells (RGCs) under conditions of delayed fixation. This study localized wolframin in mouse retina after immediate fixation.

Methods: : Cryostat sections of paraformaldehyde-fixed eyes from C56Bl/6 pigmented and Balb/c albino mice were studied with immunofluorescence using rabbit anti-wolframin antibodies. ARPE-19 cells were seeded on coverslips, fixed and studied using double labeling with anti-wolframin antibodies and DAPI.

Results: : Sections through the retina of pigmented and albino mice showed strong labeling of neurons in the ganglion cell layer, cell bodies and processes of Mueller cells, neurons in the inner nuclear layer, and a diffuse line in the position of the inner segments of photoreceptors. Strong cytoplasmic labeling of the RPE was noted in the albino retina. Double labeling confirmed cytoplasmic expression of wolframin in ARPE-19 cells.

Conclusions: : Reduction or lack of wolframin in Wolfram syndrome 1 could cause ER dysfunction in RGCs, possibly involving the IP3 receptor 1 and abnormal Ca2+ fluxes. Mutant wolframin is reported to form Ca2+ channels that lack feedback regulation on Ca2+ flux. Resulting high cytoplasmic Ca2+ could sensitize mitochondria and thus explain the phenotype of optic nerve atrophy shared with mitochondrial disease. Since WFS1 polymorphisms have been recently associated with the risk of type 2 diabetes, studies of wolframin in mouse models of diabetes may shed further light on the role of RGCs and RPE in diabetic retinopathy.

Keywords: immunohistochemistry • retinal degenerations: hereditary • proteins encoded by disease genes 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×