Abstract
Purpose: :
To investigate the biomechanical response of rat astrocytes to compressive strain.
Methods: :
DITNC1 cells (immortalized rat astrocyte cell line) were grown to confluence on stretched, sylastic membranes (Flexcell® Bioflex® plates), using custom equipment. Media was changed twice weekly with Dulbecco’s Media containing 10% FBS and 1% pen/strep. Upon reaching confluence the cells were serum deprived for 24 hours after which the stretched plates were subjected to 0%, 3%, 6%, or 12% cyclic compression at 1 Hz using the FlexerCell® Strain System FX-4000 for 2 or 24 hours. Zymography and Western blotting was carried out to identify MMP2, and TGFβ-2 expression.
Results: :
Images of the sylastic membranes show effective stretching of the membrane that is evenly distributed over its surface following incubation. An increase of MMP2 and TGFβ-2 expression was observed for compressed cells when compared with the controls.
Conclusions: :
This model is a novel and effective way to simulate the compressive strain predicted to be experienced by the cells of the LC under elevated IOP conditions in the human eye (Sigal et al, Experimental Eye Research, 2007). There was evidence that the DITNC1 cells became reactive following the induced stress. The model will be used to investigate the response of normal, human optic nerve head astrocytes to compressive strain.