April 2010
Volume 51, Issue 13
Free
ARVO Annual Meeting Abstract  |   April 2010
Comparative Shotgun and HPLC-MSn Lipidomic Analyses of Human and Gorilla Meibomian Gland Secretions Revealed Their Astonishing Similarity
Author Affiliations & Notes
  • J. C. Wojtowicz, IV
    Department of Ophthalmology,
    Univ of Texas Southwestern Medical Center, Dallas, Texas
    Centro Oftalmologico Valencia, Valencia, Venezuela
  • J. Carmody
    Department of Ophthalmology,
    Univ of Texas Southwestern Medical Center, Dallas, Texas
  • I. A. Butovich
    Department of Ophthalmology,
    Graduate School of Biomedical Sciences,
    Univ of Texas Southwestern Medical Center, Dallas, Texas
  • Footnotes
    Commercial Relationships  J.C. Wojtowicz, IV, None; J. Carmody, None; I.A. Butovich, None.
  • Footnotes
    Support  Unrestricted grant from the Research to Prevent Blindness, Inc., NIH grant EY016664
Investigative Ophthalmology & Visual Science April 2010, Vol.51, 4160. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      J. C. Wojtowicz, IV, J. Carmody, I. A. Butovich; Comparative Shotgun and HPLC-MSn Lipidomic Analyses of Human and Gorilla Meibomian Gland Secretions Revealed Their Astonishing Similarity. Invest. Ophthalmol. Vis. Sci. 2010;51(13):4160.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : Human meibomian gland secretion (hMGS), or meibum, is a complex mixture of lipids whose major role in vivo is believed to protect cornea by forming the outermost part of the tear film (TF), whose structure, composition, and physiology is still not completely understood. One of the approaches to studying human TF and hMGS is to look for the clues provided by nature trying to find a suitable animal model which would closely resemble biochemistry and physiology of human TF. Last year, we presented data on ten animal species whose MGS were compared side-by-side with hMGS. However, none of them was a close match for hMGS. Here, we report our findings on the comparative analysis of normal hMGS and MGS collected from a great ape - a 47 year old female lowland gorilla (Gorilla gorilla gorilla) (gMGS).

Methods: : MGS were collected from healthy human volunteers and the gorilla from a local zoo using the soft expression technique. HPLC separation of the lipid analytes was performed in normal and reversed phase modes. Qualitative and quantitative mass-spectrometric (MS) analyses of MGS samples were conducted using ion trap ESI and APCI MSn in both positive and negative ion modes. Direct infusion and direct injection of the samples were used for shotgun lipidomic analyses. More than 100 lipids were "fingerprinted" and/or structurally characterized.

Results: : The shotgun lipidomic MS analyses showed no major differences between hMGS and gMGS: when compared side-by-side, the samples were qualitatively and quantitatively similar to each other. The major lipid classes detected in gMGS by HPLC-MSn were oleic acid-based long chain wax esters, long-chain and very long-chain cholesteryl esters, triacylglycerols, di- and triesters (as defined by Nicolaides et al), and very long-chain (O-acyl)-omega-hydroxy fatty acids, all present in almost the same proportions in both hMGS and gMGS.

Conclusions: : Among a dozen tested animals, the meibum sample from the lowland gorilla was the closest to the human one in terms of its lipid composition. This implies striking similarities in ocular physiology and biochemistry of the great apes and humans. Taking into account the remarkable anatomical similarities of human and gorilla eyes reported earlier (Liang et al, 2005 and Knapp et al., 2007), and our close genetic relatedness, one can predict that the mechanisms of TF stabilization and deterioration in both the species should be alike.

Keywords: cornea: tears/tear film/dry eye • cornea: basic science • lipids 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×