April 2010
Volume 51, Issue 13
Free
ARVO Annual Meeting Abstract  |   April 2010
Biomechanical Profiles of Keratoconus Suspect Eyes
Author Affiliations & Notes
  • A. Saad
    Rothschild Foundation, Paris, France
  • D. Luce
    Reichert Inc, Depew, New York
  • D. Gatinel
    Ophthalmology, Rothschild Foundation - AP-HP, Paris, France
  • Footnotes
    Commercial Relationships  A. Saad, None; D. Luce, Reichert, E; D. Gatinel, None.
  • Footnotes
    Support  None.
Investigative Ophthalmology & Visual Science April 2010, Vol.51, 4987. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      A. Saad, D. Luce, D. Gatinel; Biomechanical Profiles of Keratoconus Suspect Eyes. Invest. Ophthalmol. Vis. Sci. 2010;51(13):4987.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : Measuring corneal biomechanical properties may help detect keratoconus suspect corneas and eliminate the risk for ectasia after LASIK.

Methods: : We retrospectively reviewed data of 504 eyes separated into three groups: normal (n=252), keratoconus suspect (n=80) and keratoconus (n=172). The Corneal Hysteresis (CH) and Corneal Resistance Factor (CRF) were measured by the Ocular Response Analyzer (ORA). Segregation of the three groups was based on the results of the Nidek OPD scan videokeratograph (Nidek CO., LTD, Gamagori, Japan). The Nidek Corneal Navigator (NCN) uses an artificial intelligence technique to train a computer neural network to recognize specific classifications of corneal topography. Waveform numerical scores (WS) derived from 37 parameters of the ORA corneal deformation signals were assigned by a neural network to analyze the signal curves characteristics.

Results: : The mean corneal hysteresis was 10.6 +/- 1.4 (SD) mmHg in the normal group compared to 10.0 +/- 1.6 mmHg in the keratoconus suspect group and 8.1 +/- 1.4 mmHg in the keratoconus group. The mean CRF was 10.6 +/- 1.6 mmHg in the normal group compared to 9.7 +/- 1.7 in the keratoconus suspect group and 7.1 +/- 1.6 mmHg in the keratoconus group. The mean CH and CRF were significantly different between the 3 groups (p< 0.001). Analysis of signal curves characteristics obtained with the ORA device differentiates between keratoconus suspect corneas and normal corneas with a sensitivity of 80%.

Conclusions: : CH and CRF were significantly lower in the keratoconus suspect group but their clinical relevance was small. The analysis of signal curves characteristics may help to increase the sensitivity of keratoconus suspect detection.

Keywords: cornea: clinical science • cornea: stroma and keratocytes • refractive surgery 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×