May 2008
Volume 49, Issue 13
ARVO Annual Meeting Abstract  |   May 2008
Preliminary Findings on in vivo Fundus Pattern Projection Using the Universal Retina Camera
Author Affiliations & Notes
  • D. Link
    Institute of Biomedical Engineering & Informatics, Technical University of Ilmenau, Ilmenau, Germany
  • B. U. Seifert
    Imedos GmbH, Jena, Germany
  • W. Vilser
    Imedos GmbH, Jena, Germany
  • Footnotes
    Commercial Relationships  D. Link, None; B.U. Seifert, None; W. Vilser, None.
  • Footnotes
    Support  BMBF: FKZ 13N8521, FKZ 03IP605
Investigative Ophthalmology & Visual Science May 2008, Vol.49, 898. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      D. Link, B. U. Seifert, W. Vilser; Preliminary Findings on in vivo Fundus Pattern Projection Using the Universal Retina Camera. Invest. Ophthalmol. Vis. Sci. 2008;49(13):898. doi:

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Purpose: : The Universal Retina Camera (URC) was used to demonstrate an adaptive spatial and temporal pattern projection onto the human retina.

Methods: : The apparatus used was the URC, which is a fundus-camera based setup as optical framework with two integrated spatial light modulators (SLM). Appropriate SLM positions and the control of each pixel by VGA interfaces realise a programmable optical path with the objective to have a spatial and temporal two-plane modulation. Thus, it is possible to control the light entrance into the eye (anatomic pupil plane = first plane) and to project patterns onto the retina (second plane) at the same time. The cross-sectional beam shape in the anatomic pupil plane was set to annular shape to assure the separation of illumination and imaging path. Local and temporal modulation of the fundus illumination for both static and dynamic tests was realised. A therefore required SLM was a light-transmissive micro display adapted to a 45 degrees field of view. In order to get maximum vessel contrast in the fundus images green incoherent light was used. In vivo examinations were performed on healthy subjects with mydriatic eyes.

Results: : The results of preinvestigations and tests using an artificial eye could be verified in healthy subjects. The effects of a two-plane modulation were demonstrated and confirmed in vivo. Within a field of 45 degrees the human fundus can be illuminated with arbitrary patterns. In static mode different illumination patterns like checkerboards, slits, and spots were projected onto the fundus and imaged simultaneously. In stimulation mode dynamic test patterns can be applied with frequencies of 30 Hz, 15 Hz, and 7.5 Hz. Typical values for the contrast between illuminated and blocked areas as measured from captured images are in the range from 6:1 (on the macula) to 15:1 (outside the macula).

Conclusions: : Preliminary results are presented using the URC for projecting arbitrary patterns onto the living fundus. The single images and live image sequences are captured to demonstrate the modulation effects on the human fundus. The used setup enables the application of stimulation paradigms as well as methods for fundus measuring in the area of 45 degrees. A variety of possible applications incorporated in one single device makes the URC a promising tool for complex functional analysis of the human fundus. Further research and optimisation is needed to improve performance and handling of the URC.

Keywords: retina • macula/fovea • imaging methods (CT, FA, ICG, MRI, OCT, RTA, SLO, ultrasound) 

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.