May 2008
Volume 49, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2008
Optic Interferometric Realtime Dosimetry for Selective Retina Therapy (SRT)
Author Affiliations & Notes
  • R. Brinkmann
    Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
  • H. Stoehr
    Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
  • L. Ptaszinsky
    Medical Laser Center Luebeck, Luebeck, Germany
  • M. Saeger
    Eye Clinic, University Clinics Schleswig-Holstein, Kiel, Germany
  • E. Pörksen
    Eye Clinic, University Clinics Schleswig-Holstein, Kiel, Germany
  • A. Fritz
    Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
  • J. Roider
    Eye Clinic, University Clinics Schleswig-Holstein, Kiel, Germany
  • R. Birngruber
    Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
  • Footnotes
    Commercial Relationships  R. Brinkmann, Lumenis, F; H. Stoehr, None; L. Ptaszinsky, None; M. Saeger, None; E. Pörksen, None; A. Fritz, None; J. Roider, Lumenis, F; R. Birngruber, Lumenis, F.
  • Footnotes
    Support  BMBF- grant no. FKz 01 EZ 0408
Investigative Ophthalmology & Visual Science May 2008, Vol.49, 2767. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      R. Brinkmann, H. Stoehr, L. Ptaszinsky, M. Saeger, E. Pörksen, A. Fritz, J. Roider, R. Birngruber; Optic Interferometric Realtime Dosimetry for Selective Retina Therapy (SRT). Invest. Ophthalmol. Vis. Sci. 2008;49(13):2767.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : Selective retina therapy (SRT) is a new method to treat retinal diseases associated with a decreased metabolism at the chorio-retinal junction. By applying a train of µs laser pulses, irradiated RPE cells are selectively damaged by microbubbles nucleating around the strongly absorbing intracellular melanosomes. The adjacent photoreceptors and the neural retina are completely spared. In the healing period of 1-2 weeks, the RPE is rejuvenated. Due to the optical invisibility of the RPE defects, we developed and investigated an optic-interferometric on-line dosimetry system to monitor microvaporization. In vitro, in vivo and first clinical results in comparison to standard fluorescein angiography (FLA) are presented.

Methods: : An optical fiber based interferometer was adapted to a laser slit lamp to probe the irradiated retinal spots simultaneously during treatment. A frequency doubled Q-switched Nd:YLF laser (527 nm, 350 ns) served to irradiate freshly harvested porcine RPE-samples in vitro an few rabbits in vivo. The interferometric transients were correlated to cell damage observed with a vitality stain and leakage visibility using FLA, respectively. Clinically, transients were recorded during standard SRT (SRT laser: 527nm, 100 Hz, 30 pulses a 1.7 µs) on patients with chronic serous chorioretinopathy (CSCR).

Results: : High frequencies in the MHz range were only detected in vitro in case of cell damage, which can be attributed to microbubble nucleation and dynamics. Due to the eye’s small numerical aperture of NA=0.1 the signal to noise ratio is worse in vivo, however, microbubble formation could be detected approximately 30% above angiographically determined threshold radiant exposure. First data on CSCR-patients will be reported and correlated to the angiographic visibility after treatment as well as to optoacoustic dosimetry as the current method to determine bubble formation.

Conclusions: : Optic interferometery can detect laser induced microbubble formation in SRT, non-invasively in realtime for every single laser pulse. Thus the method has the potential to serve as a basis to realize an automatic feedback-controlled SRT, unburden the clinician from any dosimetry.

Keywords: laser • retinal pigment epithelium • diabetic retinopathy 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×