May 2008
Volume 49, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2008
Critical Role of Msra in Repair of Oxidized Cytochrome C for Mitochondrial Function and Apoptosis in the Lens
Author Affiliations & Notes
  • L. A. Brennan
    Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida
  • W. Lee
    Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida
  • A. Sur
    Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida
  • T. Cowell
    Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida
  • F. Giblin
    Oakland Eye Institute, Oakland, Michigan
  • M. Kantorow
    Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida
  • Footnotes
    Commercial Relationships  L.A. Brennan, None; W. Lee, None; A. Sur, None; T. Cowell, None; F. Giblin, None; M. Kantorow, None.
  • Footnotes
    Support  EY13022
Investigative Ophthalmology & Visual Science May 2008, Vol.49, 3253. doi:https://doi.org/
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      L. A. Brennan, W. Lee, A. Sur, T. Cowell, F. Giblin, M. Kantorow; Critical Role of Msra in Repair of Oxidized Cytochrome C for Mitochondrial Function and Apoptosis in the Lens. Invest. Ophthalmol. Vis. Sci. 2008;49(13):3253. doi: https://doi.org/.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : Methionine sulfoxide reductase A (MsrA) is mitochondrial enzyme that repairs methionine converted to methionine sulfoxide (PMSO) under oxidative stress. Increased PMSO levels occur in the lens upon loss of MsrA activity with damage to mitochondria and apoptosis. Those key mitochondrial components whose function is lost in the absence of MsrA have not been identified in any tissue. Here we show that MsrA functions in lens mitochondria to repair a critical methioinine residue in Cytochrome C (CytC) that is converted to PMSO by oxidative stress. The results suggest a key role for MsrA in lens redox regulation, apoptotic switching and cataract formation.

Methods: : CytC and MsrA were co localized in human lenses by immunohistochemistry. Specific interactions between CytC and MsrA were evaluated by immune precipitation. Purified cytochrome C was treated with hypochlorous acid (HClO) and CytC oxidation products identified. The ability of MsrA to repair oxidized CytC was evaluated by examining CytC oxidase, reductase and peroxidase activities. The levels of oxidized cytochrome C were evaluated in the lenses of MsrA knockout relative to w+ mice and MsrA knockout verses w+ lenses were examined for lens opacity under normoxic and hyperbaric oxygen conditions.

Results: : CytC co-localizes with MsrA throughout the human lens including the lens nuclear fibers. CytC and MsrA form specific complexes in the lens. Oxidation of CytC results in loss of CytC oxidase, reductase and peroxidase activities through conversion of the iron bound methionine 80 of CytC to CytC met80 sulfoxide. MsrA was capable of restoring the function of all three CytC activities through reduction of CytC met80 PMSO to CytC met80. MsrA deficient mice contained high lens levels of CytC met 80 sulfoxide relative to w+ mice and treatment of the MsrA deficient mice with hyperbaric oxygen resulted in increased lens opacity.

Conclusions: : Oxidation of CytC is a key factor in mitochondrial redox regulation and apoptotic control. The data presented demonstrate that MsrA repairs CytC damaged upon oxidation. Regulation of CytC activity through MsrA repair of oxidized CytC is likely to mediate the balance between mitochondrial redox activities and apoptosis in the lens, contributing to cataract formation.

Keywords: cataract • mitochondria • apoptosis/cell death 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×