May 2007
Volume 48, Issue 13
ARVO Annual Meeting Abstract  |   May 2007
Modeling Elasticity Distribution in a Presbyotic Lens
Author Affiliations & Notes
  • K. W. Hollman
    Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
  • M. O'Donnell
    University of Washington, Seattle, Washington
  • Footnotes
    Commercial Relationships K.W. Hollman, None; M. O'Donnell, None.
  • Footnotes
    Support NIH Grant EY015876
Investigative Ophthalmology & Visual Science May 2007, Vol.48, 3832. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      K. W. Hollman, M. O'Donnell; Modeling Elasticity Distribution in a Presbyotic Lens. Invest. Ophthalmol. Vis. Sci. 2007;48(13):3832.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Purpose:: There are many theories describing accommodation and presbyopia. Based on recent measurements in our lab and others, we focus on modeling the contribution from general lens elasticity and the elasticity distribution. These measurements show a constantly varying elasticity as a function of radial distance.

Methods:: We have developed a finite element model that approximates this varying elasticity as nine spherically concentric layers within the lens. This distribution is based on our measurements and optical microscopy of layer geometry. We do not just model physiology but vary parameters in the model to separate the biomechanical effects of elasticity distribution from the increase in composite elasticity.

Results:: The model verifies that an average elasticity increase does produce accommodation loss. For a soft average lens with an average Young’s modulus of 0.67kPa, a ciliary muscle force of 0.05N produces a change in optical power of 3.8D. In a hard average lens (Young’s modulus = 4.0kPa) the same force produces a change of only 0.6D. Results also show that a lens with a soft center will accommodate more than a lens with a hard center even though both have the same average elasticity. For a ciliary muscle force of 0.05N, the soft center model produces a change in optical power of 3.2D while the hard center lens with the same average elasticity produces a change of 0.30D. Of course, in actual physiology both mechanisms would simultaneously affect accommodation in addition to mechanisms proposed by other theories.

Conclusions:: This new model indicates that the elasticity distribution significantly contributes to accommodation loss. Methods for correcting presbyopia need to address not just average lens softening but the location of the softening.

Keywords: presbyopia • intraocular lens • computational modeling 

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.