May 2007
Volume 48, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2007
Effects of VEGF Inhibition in the Canine Model of Retinopathy of Prematurity (ROP)
Author Affiliations & Notes
  • I. A. Bhutto
    Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland
  • D. S. McLeod
    Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland
  • S. Y. Kim
    Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland
  • S. J. Wiegand
    Regeneron Pharmaceuticals, Inc., Tarrytown, New York
  • G. A. Lutty
    Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, Maryland
  • Footnotes
    Commercial Relationships I.A. Bhutto, None; D.S. McLeod, None; S.Y. Kim, None; S.J. Wiegand, Regeneron Pharmaceuticals, Inc., E; G.A. Lutty, None.
  • Footnotes
    Support This work was supported by NIH Grant EY09357 (GL) and EY01765 (Wilmer) and funds from Regeneron Pharmaceuticals, Inc.
Investigative Ophthalmology & Visual Science May 2007, Vol.48, 4051. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      I. A. Bhutto, D. S. McLeod, S. Y. Kim, S. J. Wiegand, G. A. Lutty; Effects of VEGF Inhibition in the Canine Model of Retinopathy of Prematurity (ROP). Invest. Ophthalmol. Vis. Sci. 2007;48(13):4051.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose:: The superficial layer of the dog retinal vasculature forms by vasculogenesis, similar to the initial development of the human retinal vasculature. This initial phase in development occurs in the first postnatal week in dog and in utero in human. This study evaluated the effects of VEGF Trap, a receptor-based fusion protein that binds all isoforms of VEGF-A as well as placental growth factor, on retinal vasculogenesis and pathological neovascularization (NV) in canine oxygen-induced retinopathy, a model for human ROP.

Methods:: One day-old dogs (postnatal day 1, P1) were exposed to 100% O2 for 4 days, during which time vasculogenesis ceases and vaso-obliteration occurs. When the animals are returned to room air, the resultant ischemia initiates a massive vasoproliferative response: florid tufts of intravitreal NV form by P21 and persist to at least P45. VEGF Trap (5, 25, or 250 ug) was injected intravitreally in one eye and a control protein (human Fc) was injected in the fellow eye of air control and oxygen-treated dogs on P6, one day following return to room air. The effect of treatment on the retinal vasculature and preretinal NV was evaluated on P21.

Results:: In air controls, the superficial vascular plexus was reduced in eyes injected with 250 or 25 ug VEGF Trap and the deep capillary network was absent. In contrast, eyes that received the 5 ug dose were indistinguishable from control eyes. In animals exposed to hyperoxia, all eyes injected with VEGF Trap exhibited markedly less preretinal NV than Fc-injected fellow eyes, irrespective of the dose of Trap administered. The retinal vascular area also was reduced in eyes injected with 250 or 25 ug of the Trap, but the 5 ug dose did not inhibit revascularization of the retina.

Conclusions:: In the context of ROP, the ideal profile of an anti-angiogenic agent would be to inhibit pathologic NV, without altering developmental vasculogenesis or revascularization of the retina following hyperoxia-induced vaso-obliteration. VEGF Trap profoundly inhibited the formation of preretinal NV in the dog model of ROP. However, as reported previously for an antibody directed against VEGFR2, the higher doses of VEGF Trap also inhibited revascularization of retina, resulting in a large avascular periphery. In contrast, the lowest dose of VEGF Trap effectively blocked intravitreal NV, without appreciably affecting vasculogenesis or retinal revascularization. These findings indicate that dose selection is likely to be a critical variable in considering the use of VEGF-targeting agents for the treatment of ROP.

Keywords: retinopathy of prematurity • growth factors/growth factor receptors • retinal neovascularization 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×