May 2007
Volume 48, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2007
UV Induced Membrane Damage in the Lens: Implications in Cataractogenesis and Its Attenuation by Antioxidants
Author Affiliations & Notes
  • S. D. Varma
    Ophthalmology & Visual Sciences and Biochemistry, Univ of Maryland Sch of Medicine, Baltimore, Maryland
  • K. R. Hegde
    Ophthalmology & Visual Sciences and Biochemistry, Univ of Maryland Sch of Medicine, Baltimore, Maryland
  • Footnotes
    Commercial Relationships S.D. Varma, None; K.R. Hegde, None.
  • Footnotes
    Support NIH grant EY01292
Investigative Ophthalmology & Visual Science May 2007, Vol.48, 4914. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      S. D. Varma, K. R. Hegde; UV Induced Membrane Damage in the Lens: Implications in Cataractogenesis and Its Attenuation by Antioxidants. Invest. Ophthalmol. Vis. Sci. 2007;48(13):4914.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose:: UV frequencies in sunlight are implicated in the genesis of senile cataracts. The underlying mechanism remains unclear. Since the survival of the lens depends largely on the Na+ -K+ ATPase mediated active transport, we examined if this could be adversely affected by UV. We hypothesize this to be due to photo-excitation of the aromatic residues, coupled to enzyme inactivation and concomitant generation of reactive oxygen by electron emission and energy transfer.

Methods:: The above hypothesis has been investigated by studying the status of the cation transport activity as affected by UV (302nm) exposure to rat lenses incubated in Tyrode medium containing 86RbCl, and determining the distribution ratio of Rb+ between the lens water and the incubation medium, attained after ~ 4.5 hours. In additional experiments, incubations under UV were done in medium containing SOD, Catalase and pyruvate. Tissue damage was also assessed histologically (H&E staining) and biochemically, the latter by measuring ATP, GSH and GSSG.

Results:: As stipulated, UV has been found to have a significant inhibitory effect on the active transport of Rb+, the distribution ratio in UV being about 55% of the dark controls. Morphological damage to the tissue was apparent by extensive and aberrant migration of the differentiating fibers into the subepithelial anterior cortex. ATP also decreased significantly, decreasing from the dark control value of ~1.0 mmoles to ~0.28 mmoles /kg wet weight of the tissue. It is interesting to note that GSH depletion was not so significant, a finding needing further explanation. It was, however, interesting to observe that the UV damage to the lens appear to be significantly attenuated by pyruvate, SOD and Catalase, in terms of the level of ATP and Rb+ uptake. The preventive effect was apparent even morphologically.

Conclusions:: The results clearly suggest that the UV damage to the lens is initiated by photochemical excitation of the aromatic chromophores (indole and phenyl group containing amino acids) in membrane protein structure, especially those present in Na+ -K+ ATPase, and possible formation of reactive oxygen . The hypothesis is tentatively proven by the loss of the pump transport activity under UV with consequent intracellular detrimental changes such as alterations in the cytosolic electrolyte composition. Studies on the specificity of ROS involvement are in progress.

Keywords: cataract • antioxidants • oxidation/oxidative or free radical damage 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×