May 2007
Volume 48, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2007
Vasopressin, a Naturally Occurring Anti-Diuretic, Alters Refractive Compensation in Chicks: Implications for Ocular Fluid Dynamics
Author Affiliations & Notes
  • M. J. Murphy Edwards
    School of Psychological Science, La Trobe University, Bundoora, Australia
  • S. G. Crewther
    School of Psychological Science, La Trobe University, Bundoora, Australia
  • M. J. Goodyear
    School of Psychological Science, La Trobe University, Bundoora, Australia
  • PSY30P Vision Neuroscience Group
    School of Psychological Science, La Trobe University, Bundoora, Australia
  • A. K. McAuley
    School of Psychological Science, La Trobe University, Bundoora, Australia
  • D. P. Crewther
    Brain Sciences Institute, Swinburne University, Hawthorn, Australia
  • Footnotes
    Commercial Relationships M.J. Murphy Edwards, None; S.G. Crewther, None; M.J. Goodyear, None; A.K. McAuley, None; D.P. Crewther, None.
  • Footnotes
    Support None.
Investigative Ophthalmology & Visual Science May 2007, Vol.48, 5927. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      M. J. Murphy Edwards, S. G. Crewther, M. J. Goodyear, PSY30P Vision Neuroscience Group, A. K. McAuley, D. P. Crewther; Vasopressin, a Naturally Occurring Anti-Diuretic, Alters Refractive Compensation in Chicks: Implications for Ocular Fluid Dynamics. Invest. Ophthalmol. Vis. Sci. 2007;48(13):5927.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose:: Vasopressin is a naturally occurring anti-diuretic hormone which acts both in the CNS and periphery to control osmolarity and body fluid volume via the regulation of vasoconstriction, free water absorption and alterations in aquaporin expression. It has also been implicated in the regulation of intraocular pressure (IOP) (Gondim et al., 2001). As our previous research suggests that alterations in fluid dynamics in the retina are closely associated with refractive development (Liang et al., 2004) we investigated the dose related effect of vasopressin on refractive compensation and ocular growth in response to lens-induced defocus in the chick model.

Methods:: Chicks were raised from days 5-10 post-hatching under a 12 hr day/night cycle at 31°C following a monocular intravitreal injection of 5µl of either PBS, 1 × 10-6 mg or 5 × 10-6 mg of vasopressin in PBS (fellow eyes received 5µl of PBS), and fitting with ±10D lenses or no lens. Biometry including retinoscopy and A-scan ultrasonography was performed and eyes were prepared for histological and immunological analysis.

Results:: Injection of 1 × 10-6 mg of Vasopressin resulted in a 3D myopic shift beyond the refraction of PBS control, while 5 × 10-6 mg of vasopressin reduced compensation to +10D lenses, leading to a significant Lens × Drug interaction effect (p = .003) for Refractive State. Similar changes were seen in measures of Axial Length, with the majority of growth begin observed in the Vitreous Chamber. Growth patterns were comparable between groups for Anterior Chamber measure, with the greatest depth, although non-significant, being observed in the 1 × 10-6 mg Vasopressin condition. Little change was observed in the no lens groups.

Conclusions:: Increased refractive compensation and axial elongation in the presence of negative defocus and vasopressin, a natural anti-diuretic hormone, supports Crewther 2000’s hypothesis that modulation of retinal fluid dynamics plays a role in the process of refractive compensation.

Keywords: myopia • retina: neurochemistry • intraocular pressure 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×