May 2006
Volume 47, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2006
Dendrites of Rod Bipolar Cells Sprout in the Aging Retina
Author Affiliations & Notes
  • K. Eliasieh
    University of California, Davis, CA
    Section of Neurobiology, Physiology, and Behavior,
  • L.C. Liets
    University of California, Davis, CA
    Section of Neurobiology, Physiology, and Behavior,
  • D.A. van der List
    University of California, Davis, CA
    Section of Neurobiology, Physiology, and Behavior,
  • L.M. Chalupa
    University of California, Davis, CA
    Section of Neurobiology, Physiology, and Behavior,
    Department of Ophthalmology and Visual Science, School of Medicine,
  • Footnotes
    Commercial Relationships  K. Eliasieh, None; L.C. Liets, None; D.A. van der List, None; L.M. Chalupa, None.
  • Footnotes
    Support  National Eye Institute (NIH EY03991) and Research to Prevent Blindness to L.M.C. and a Medical Fellowship from the Howard Hughes Medical Institute to K. E.
Investigative Ophthalmology & Visual Science May 2006, Vol.47, 4199. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      K. Eliasieh, L.C. Liets, D.A. van der List, L.M. Chalupa; Dendrites of Rod Bipolar Cells Sprout in the Aging Retina . Invest. Ophthalmol. Vis. Sci. 2006;47(13):4199.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose: : The effects of aging on the visual system include a variety of degenerative and regressive events. In the retina loss of photoreceptors and ganglion cells has been documented in several species, including humans, but relatively little is known about age–related changes in other retinal cell types. In the present study we examine normal aging retina in C57/B6 mice and document an unexpected sprouting of rod bipolar cell dendrites into the outer plexiform layer (OPL).

Methods: : Immunohistochemical and fluorescent imaging techniques were used to investigate rod bipolar cell dendritic morphology in young (3 to 6 months of age) and aged (> 1 year) mice. These cells were labeled with a PKC antibody and aberrant dendritic processes extending into the OPL were traced for quantitative analysis. Presynaptic sites were labeled with PSD–95 and the number of photoreceptors was determined by counting DAPI labeled profiles in the outer nuclear layer (ONL).

Results: : Retinas of old mice had many rod bipolar cell dendrites that extended into the ONL. By contrast, these processes were strictly confined to the OPL in young adult mice. The number and length of the aberrant dendrites were found to increase with age, and their presence was evident at all retinal eccentricities. Furthermore, such processes were closely juxtaposed with the presynaptic sites of photoreceptors (labeled with PSD–95) suggesting that they form functional synapses. Detailed counts of photoreceptors in retinal sections of old animals containing the aberrant rod bipolar cell dendrites demonstrated no significant decline in the number of photoreceptors, a finding consistent with previously published findings in this mouse strain.

Conclusions: : Our findings suggest that afferent cell loss is not the impetus for the age–related dendritic sprouting we observed. These results could be interpreted as reflecting a compensatory change in retinal neural circuitry during normal aging. This contrasts with the degenerative changes that have been noted previously at all other levels of the nervous system.

Keywords: aging • bipolar cells • plasticity 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×