May 2005
Volume 46, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2005
Ovine Lens cDNA Sequences and Predicted Protein Masses Allow Confirmation of Increased Proteolysis and Deamidation of A–Crystallins During Hereditary Cataract
Author Affiliations & Notes
  • L.J. G. Robertson
    Agriculture and Life Sciences Division, Lincoln University, Canterbury, New Zealand
  • L.L. David
    Integrative Biosciences, Oregon Health and Sciences University, Portland, OR
  • J.D. Morton
    Agriculture and Life Sciences Division, Lincoln University, Canterbury, New Zealand
  • Footnotes
    Commercial Relationships  L.J.G. Robertson, None; L.L. David, None; J.D. Morton, None.
  • Footnotes
    Support  FoRST Grant LINX0205, NEI Grant EY07755
Investigative Ophthalmology & Visual Science May 2005, Vol.46, 3887. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      L.J. G. Robertson, L.L. David, J.D. Morton; Ovine Lens cDNA Sequences and Predicted Protein Masses Allow Confirmation of Increased Proteolysis and Deamidation of A–Crystallins During Hereditary Cataract . Invest. Ophthalmol. Vis. Sci. 2005;46(13):3887.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Abstract: : Purpose: To determine ovine αA and αB–crystallin sequences so that the modifications to these proteins can be determined by mass spectrometry following formation of hereditary cataract. Methods: cDNA was synthesised from ovine lens epithelium RNA using oligo dT primers. PCR was optimised using gene specific primers designed for the 5’ and 3’ UTR regions of the bovine αA and αB–crystallin mRNA sequences. The amplimers were then cloned and sequenced. Soluble and insoluble ovine lens proteins were isolated from 26–week old lambs with mature hereditary cataracts, separated by two–dimensional electrophoresis, and alpha–crystallins eluted from gel slices and their masses determined by electrospray ionisation mass spectrometry. Results: Ovine αA and αB–crystallin cDNAs encoded proteins of 173 and 175 amino acids, with predicted masses of 19,818 and 20,109, respectively. These predicted masses matched the measured masses of the unmodified forms of αA– and αB–crystallins from normal control lenses. Formation of hereditary cataracts was associated with the appearance of both lower molecular weight and acidic forms of αA and αB. The measured masses of the modified forms of α–crystallins indicated that they were produced by a combination of proteolysis and deamidation. The measured masses indicated that both 5 and 11 residues were removed from the C–terminus of αA, and 5 and 12 residues from the C–terminus of αB. Additional acidic forms of truncated α–crystallins were also found that differed by less than 2 mass units from their accompanying less acidic forms. Deamidation was the only known modification that could cause this decrease in pI, since it introduces only a single unit increase in mass that was less than the experimental error in mass measurement (+/– 2 mass units). Conclusions: Determination of ovine α–crystallin sequences allowed confirmation of the cleavage sites occurring in these proteins during cataract formation. Furthermore, detection of more acidic species of α–crystallins with no significant change in mass suggested that increased deamidation occurred. Elevated lens calcium was previously reported in this hereditary cataract model. This may lead to activation of both calpains, which can cause the observed C–terminal truncation in α–crystallins, and transglutaminase, which can cause deamidation. Both these modifications may contribute to opacification in ovine cataracts by decreasing α–crystallin chaperone function.

Keywords: crystallins 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×