May 2004
Volume 45, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2004
The Rx Homeobox Gene Is Required For Both Neural Retina And Lens Placode Induction
Author Affiliations & Notes
  • P.H. Mathers
    Sensory Neuroscience Research Center, West Virginia Univ Sch of Med, Morgantown, WV
  • V.A. Voronina
    Sensory Neuroscience Research Center, West Virginia Univ Sch of Med, Morgantown, WV
    Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD
  • C. Wilson
    Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD
  • S.V. Kozlov
    Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD
  • M. Lewandoski
    Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD
  • Footnotes
    Commercial Relationships  P.H. Mathers, None; V.A. Voronina, None; C. Wilson, None; S.V. Kozlov, None; M. Lewandoski, None.
  • Footnotes
    Support  NEI EY12152 and E. Matilda Ziegler Foundation to P.H.M. and the NCI to M.L.
Investigative Ophthalmology & Visual Science May 2004, Vol.45, 2249. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      P.H. Mathers, V.A. Voronina, C. Wilson, S.V. Kozlov, M. Lewandoski; The Rx Homeobox Gene Is Required For Both Neural Retina And Lens Placode Induction . Invest. Ophthalmol. Vis. Sci. 2004;45(13):2249.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Abstract: : Purpose: To determine the functional role of the mammalian Rx homeobox gene during retinal development and in doing so, help to understand the molecular program that directs retinal and lens formation. Methods: A conditional deletion allele of the mouse Rx gene was generated by ES cell targeting and shown to convert to a Rx null allele upon exposure to Cre recombinase. We crossed this allele to a mouse line expressing Cre under the control of the Foxg1 promoter, effectively eliminating Rx protein activity only in the developing optic vesicle from embryonic day (E) 9 onward. Rx–deleted embryos were analyzed morphologically, immunocytologically, and molecularly to evaluate the defects caused by Rx inactivation during retinal development. Co–transfection experiments were performed with human RX protein and the BMP–4 promoter in Cos7 cells. Results: Deletion of Rx after optic vesicle formation, but before the formation of the optic cup, leads to an absence of neural retinal cell specification, as evidenced by the lack of Chx10 and CyclinD1 expression in mutant optic vesicles. In addition, the lens placode fails to form, with concomitant lack of Sox2 and Pax6 expression in the overlying surface ectoderm. Growth factors involved in the induction of ocular tissue, such as BMP–4, FGF–8, and FGF–15, are also reduced in the mutant optic vesicle. In co–transfection experiments, Rx causes a 6–fold increase in BMP–4 promoter activity, suggesting a mechanism by which Rx may promote lens placode formation. The mutant optic vesicles continue to develop into RPE, with activation of Mitf, Otx2, and Trp–2 at E9.5 and pigment deposition by E11.5, suggesting terminal differentiation. Conclusions: We previously showed that Rx activity is necessary for the formation of the optic vesicle. Here we demonstrate that Rx is also crucial at later developmental stages for the specification of neural retinal cell fate and for the induction of the lens placode. The ability of Rx to stimulate BMP–4 expression provides a mechanism for lens placode induction that is dependent on neural retinal formation. In the absence of Rx, the distal optic vesicle takes on an RPE–specific fate, suggesting that Rx may actively inhibit RPE fate during normal neural retinal development, and therefore, inactivation of Rx may be required for normal RPE formation. These findings highlight the importance of the Rx gene in early ocular developmental patterning and retinal cell specification.

Keywords: retinal development • transgenics/knock–outs • transcription factors 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×