May 2004
Volume 45, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2004
Accuracy and Repeatability of a New Wave Front Aberrometer
Author Affiliations & Notes
  • L. Warden
    Ophthonix Inc., San Diego, CA
  • G. Mills
    Ophthonix Inc., San Diego, CA
  • W. Foote
    Ophthonix Inc., San Diego, CA
  • D. Sandler
    Ophthonix Inc., San Diego, CA
  • J. Lemperle
    Ophthonix Inc., San Diego, CA
  • P. Globerson
    Ophthonix Inc., San Diego, CA
  • A. Dreher
    Ophthonix Inc., San Diego, CA
  • Footnotes
    Commercial Relationships  L. Warden, Ophthonix, Inc. E; G. Mills, Ophthonix, Inc. E; W. Foote, Ophthonix, Inc. E; D. Sandler, Ophthonix, Inc C; J. Lemperle, Ophthonix, Inc. C; P. Globerson, Ophthonix, Inc. C; A. Dreher, Ophthonix, Inc. E.
  • Footnotes
    Support  none
Investigative Ophthalmology & Visual Science May 2004, Vol.45, 2840. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      L. Warden, G. Mills, W. Foote, D. Sandler, J. Lemperle, P. Globerson, A. Dreher; Accuracy and Repeatability of a New Wave Front Aberrometer . Invest. Ophthalmol. Vis. Sci. 2004;45(13):2840.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Abstract: : Purpose:To assess the accuracy and repeatability of measuring low and high order aberrations with a new wavefront aberrometer based on holographic grating technology (Ophthonix Inc., San Diego, CA). Methods:Accuracy of low–order aberration measurements was determined by measuring the optical power of a calibrated model eye with adjustable focal length over a range of –9D to +10D. Accuracy of high–order aberration measurements was determined by measuring waveplates exhibiting known amounts of coma, trefoil, and spherical aberration. Repeatability of the instrument was assessed by repeated measurement (n=5) of low and high order aberrations in 26 eyes of 13 subjects (intra–operator reproducibility). Results:Low order aberration measurements obtained with the new wave front aberrometer were highly linear over the total range of the model eye (–9D to +10D), with a correlation coefficient of R2=0.9991. The average standard deviation of measurements of waveplates exhibiting 3rd and 4th order aberrations was 0.004 µm. Using a ZYGO interferometer as reference, the maximum measurement error of the new aberrometer for any individual high order term was less than 0.014 µm, and better than 0.022 µm for the RMS measurement. Average repeatability (SD) of measurements in patients’ eyes was found to be 0.09D, 0.08D, 0.01 µm, 0.01 µm, and 0.02 µm for sphere, cylinder, spherical aberration, trefoil, and coma, respectively. Conclusions:Low and high order measurements obtained with the holographic grating based aberrometer showed excellent agreement with known values of a model eye and various wave plates. Repeated measurements obtained from patients’ eyes were found to be highly reproducible.

Keywords: refraction • optical properties 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×