May 2004
Volume 45, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2004
Characterisation of the Eye Lens Crystallins from the Antarctic Toothfish, Dissostichus mawsoni
Author Affiliations & Notes
  • A.J. Kiss
    Animal Biology,
    University of Illinois at Urbana–Champaign, Urbana, IL
  • A.Y. Mirarefi
    Centre for Biophysics and Computational Biology,
    University of Illinois at Urbana–Champaign, Urbana, IL
  • S. Ramakrishnan
    Chemical and Biomolecular Engineering,
    University of Illinois at Urbana–Champaign, Urbana, IL
  • C.F. Zukoski
    Chemical and Biomolecular Engineering,
    University of Illinois at Urbana–Champaign, Urbana, IL
  • C.–H.C. Cheng
    Animal Biology,
    University of Illinois at Urbana–Champaign, Urbana, IL
  • A.L. DeVries
    Animal Biology,
    University of Illinois at Urbana–Champaign, Urbana, IL
  • Footnotes
    Commercial Relationships  A.J. Kiss, None; A.Y. Mirarefi, None; S. Ramakrishnan, None; C.F. Zukoski, None; C.C. Cheng, None; A.L. DeVries, None.
  • Footnotes
    Support  NSF–OPP Grant 0231006
Investigative Ophthalmology & Visual Science May 2004, Vol.45, 3968. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      A.J. Kiss, A.Y. Mirarefi, S. Ramakrishnan, C.F. Zukoski, C.–H.C. Cheng, A.L. DeVries; Characterisation of the Eye Lens Crystallins from the Antarctic Toothfish, Dissostichus mawsoni . Invest. Ophthalmol. Vis. Sci. 2004;45(13):3968.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Abstract: : Purpose: Fishes that inhabit the perennially sub–freezing (–2°C) water of the Southern Ocean surrounding the Antarctic continent are cold–adapted. The eye lens of the giant Antarctic Toothfish, Dissostichus mawsoni, is completely transparent at –2°C, whereas mammalian eye lenses are cold sensitive, displaying a phenomenon known as a cold–cataract at 20°C. It is one of the highly expressed proteins of the lens, a γ crystallin that is responsible for the onset of the mammalian cold–cataract. Methods: We have purified the toothfish crystallins by size fractionation into the three major groups; α, ß, and γ, and have characterised them via SDS–PAGE and immunoblot, finding α and γ crystallin to be the major components. Results: In vitro experiments with isolated crystallins have established that fish α crystallin is a chaperone protein. Dynamic Light Scattering (DLS) experiments have confirmed that during the chaperone process, the α crystallin increases in hydrodynamic diameter, presumably by interacting with the γ crystallin. However, in a cross–species assay, the cow (mammalian) α crystallin cannot effectively chaperone the cold–adapted toothfish γ crystallins. Initial cDNA cloning has indicated that toothfish γ crystallins are less hydrophobic than homologous cow γ crystallins. Conclusions: As chaperone activity involves hydrophobic interactions, which are less important at low temperatures, we propose that the absence of chaperone activity between toothfish γ crystallins and the cow α crystallin originates with the less hydrophobic and low temperature stabile toothfish γ crystallins. Using structure–function and molecular analyses of the cold stable lens from this natural "mutant", the Antarctic toothfish, we hope to elucidate areas of crystallin stability and structure that will be valuable in addressing cataracts in man.

Keywords: cataract • protein purification and characterization • chaperones 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×