May 2003
Volume 44, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2003
In Mammals, Cones, but Not Rods, Demonstrate Ca2+-dependent Modulation of cGMP-gated Channels
Author Affiliations & Notes
  • T.I. Rebrik
    Physiolgy, Univ of Califorina at San Francisco, San Francisco, CA, United States
  • J.I. Korenbrot
    Physiolgy, Univ of Califorina at San Francisco, San Francisco, CA, United States
  • Footnotes
    Commercial Relationships  T.I. Rebrik, None; J.I. Korenbrot, None.
  • Footnotes
    Support  NIH Grant EY05498
Investigative Ophthalmology & Visual Science May 2003, Vol.44, 3181. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      T.I. Rebrik, J.I. Korenbrot; In Mammals, Cones, but Not Rods, Demonstrate Ca2+-dependent Modulation of cGMP-gated Channels . Invest. Ophthalmol. Vis. Sci. 2003;44(13):3181.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Abstract: : Purpose: In mammals cones adapt over a wide range of light intensities, but rods hardly adapt at all. In search of a molecular explanation for this observation we assessed Ca2+-dependent modulation of ligand sensitivity in cyclic-GMP gated (CNG) ion channels of intact mammalian rods and cones. Methods: Solitary photoreceptors were isolated by proteolytic treatment and mechanical disruption of ground squirrel retina. Rods and cones were specifically distinguished by their ability to bind, or not, PNA lectin. Using tight-seal electrodes, identified photoreceptors were loaded with Diazo-2, a caged Ca2+ buffer, a fixed concentration of 8Br-cGMP and PDE blockers Zaprinast or Sildenafil. Under voltage-clamp, we measured currents elicited by bright-flash uncaging of Diazo-2. Results: Sudden decrease in cytoplasmic Ca2+ caused by the uncaging flash resulted in a large, transient inward current in cones, but not at all in rods. Control experiments reveal the current changes reflect activation of CNG channels, in the presence of unchanging ligand concentration, and not other possible mechanisms, such as guanylyl cyclase activation or activation of Ca2+-dependent channels. Conclusions: In mammalian cones, but not rods, the activity of CNG channels is modulated by Ca2+ in the presence of constant ligand concentration. At levels of channel activity comparable to that measured in darkness, current enhancement due to channel modulation can be 3 to 5-fold in cones, but none is observed in rods. Channel modulation must be an important part of the mechanism of light adaptation in cones and its absence may explain the lack of adaptation in rods.

Keywords: photoreceptors • ion channels • second messengers: pharmacology/physiology 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×