May 2003
Volume 44, Issue 13
Free
ARVO Annual Meeting Abstract  |   May 2003
Retinal Image Analysis to Detect and Quantify Lesions Associated With Diabetic Retinopathy
Author Affiliations & Notes
  • M. Lopez
    Ioba, University of Valladolid, Valladolid, Spain
  • C. Sanchez
    Ioba, University of Valladolid, Valladolid, Spain
  • R. Hornero
    Ioba, University of Valladolid, Valladolid, Spain
  • Footnotes
    Commercial Relationships  M. Lopez, None; C. Sanchez, None; R. Hornero, None.
Investigative Ophthalmology & Visual Science May 2003, Vol.44, 3977. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      M. Lopez, C. Sanchez, R. Hornero; Retinal Image Analysis to Detect and Quantify Lesions Associated With Diabetic Retinopathy . Invest. Ophthalmol. Vis. Sci. 2003;44(13):3977.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Abstract: : Purpose: Diabetic retinopathy is a leading cause of vision loss in developed countries. Screening programs can identify the disease at an earlier and more treatable stage. Retinal digital imaging is becoming available as a means of screening for diabetic retinopathy. Using images of the ocular fundus, we are developing algorithms for the detection and classifications of various lesions associated with diabetic retinopathy. Moreover digital images have the potential to be processed by automatic analysis systems. Methods: A program for detecting and quantifying diabetic retinopathy is proposed. The program performs an image enhancement of the digital fundus photographs. This enhancement is carried out by subtracting background illumination of the photographs and applying of Frei and Chen operator (an edge-finding operator) to the result. In this way, the system automatically detects and discriminates between hard exudates, cotton wools spots and haemorrhages and provides the number of the different lesions and their location in the ocular fundus. Results: A total of 59 digital fundus photographs were examined of whom 7 (12%) present hard exudates, 4 (7%) cotton wools spots, 2 (3%) haemorrhages and 46 (78%) the three lesions all together. In all of them, the visual discrimination and automatic detection of hard exudates, cotton wools spots and haemorrhages were successful. However, it can also be seen that a number of the false negative cases arise when the different lesions were very close together. Conclusions: The long term goal of the project is to automate the screening for diabetic retinopathy with retinal images. We have described the preliminary development of a tool to provide automatic analysis of digital fundus photographs taken as part of routine monitoring of diabetic retinopathy. We have proved its efficiency for detecting and discriminating between various lesions associated with diabetic retinopathy: hard exudates, cotton wools spot and haemorrhages.

Keywords: diabetic retinopathy • image processing • imaging/image analysis: clinical 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×