December 2002
Volume 43, Issue 13
Free
ARVO Annual Meeting Abstract  |   December 2002
AMD-Like Retinal Degeneration in S100B Transgenic Mice
Author Affiliations & Notes
  • KA Howes
    Ophthalmology Univ of Utah/Moran Eye Center Salt Lake City UT
  • B Schmidt
    Ophthalmology Univ of Utah/Moran Eye Center Salt Lake City UT
  • J Church-Kopish
    Ophthalmology Univ of Utah/Moran Eye Center Salt Lake City UT
  • S Pulukuri
    Eye Res Inst Oakland University Rochester MI
  • JM Frederick
    Ophthalmology Univ of Utah/Moran Eye Center Salt Lake City UT
  • A Sitaramayya
    Eye Res Inst Oakland University Rochester MI
  • A Marks
    Med Res U of Toronto Banting and Best Toronto ON Canada
  • W Baehr
    Ophthalmology Univ of Utah/Moran Eye Center Salt Lake City UT
  • Footnotes
    Commercial Relationships   K.A. Howes, None; B. Schmidt, None; J. Church-Kopish, None; S. Pulukuri, None; J.M. Frederick, None; A. Sitaramayya, None; A. Marks, None; W. Baehr, None. Grant Identification: Support: MVRF, NIH Grant EY08123, NIH Grant EY07158
Investigative Ophthalmology & Visual Science December 2002, Vol.43, 2812. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      KA Howes, B Schmidt, J Church-Kopish, S Pulukuri, JM Frederick, A Sitaramayya, A Marks, W Baehr; AMD-Like Retinal Degeneration in S100B Transgenic Mice . Invest. Ophthalmol. Vis. Sci. 2002;43(13):2812.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Abstract: : Purpose:S100B, previously identified as CD-GCAP (calcium-dependent guanylate cyclase activating protein), is thought to regulate the activity of a membrane-bound guanylate cyclase in photoreceptor cells at high [Ca2+]. It is highly probable, however, that S100B serves additional functions in retina consistent with its selective expression in this tissue. S100B transgenic mice were generated originally to study effects of S100B overexpression on CNS development and function. In this respect, it is interesting that elevated levels of S100B may contribute to neuronal degeneration in the age-related Alzheimer's disease. Our study examines the effect of S100B overexpression on retinal tissue with the aim of identifying additional S100B targets. Methods:RPE/retinas from S100B transgenic and age-matched control mice were compared by histology, confocal microscope immunocytochemistry, and immunoblot analyses. Results:S100B transgenic mice (from 2 to 6 months) show intense immunolocalization of S100B in RPE unlike wild-type mice. Peripheral RPE regions appear healthy, suggesting that S100B accumulation in itself does not affect cell viability. Unlike age-matched controls, autofluorescent granules accumulate in 2-month old transgenic RPE cells and by 6 months, RPE cells are packed with granules. Correspondingly, 2-month old transgenic mice show no overt photoreceptor cell pathology, but 6-month old S100B transgenic mice show loss of photoreceptors, loss of RPE cells, disorganization of outer segments, and subretinal tears. Conclusion:S100B transgenic mice reveal a retinal degeneration arising from perturbation of the RPE/choroid and loss of photoreceptors from the retina in a central-to-peripheral gradient. Additionally, autofluorescent granule accumulation in RPE cells, outer segment disorganization and subretinal tears are observed. The S100B transgenic mice are the first promising animal model for human AMD (age-related macular degeneration). Further studies in these mice will determine their usefulness in understanding the pathogenesis of AMD and designing therapeutic approaches to prevention and treatment of this disease.

Keywords: 308 age-related macular degeneration • 606 transgenics/knock-outs • 567 retinal pigment epithelium 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×