December 2002
Volume 43, Issue 13
Free
ARVO Annual Meeting Abstract  |   December 2002
Tissue-engineered Neurite Conduits to Connect Retinal Ganglion Cells to an Electronic Retinal Prosthesis
Author Affiliations & Notes
  • P Huie
    Stanford University Stanford CA
    Ophthalmology & WW Hansen Experimental Physics Lab
  • MC Peterman
    Stanford University Stanford CA
    Applied Physics
  • T Leng
    Ophthalmology
    Stanford University Stanford CA
  • CJ Lee
    Chemical Engineering
    Stanford University Stanford CA
  • MF Marmor
    Ophthalmology
    Stanford University Stanford CA
  • DM Bloom
    Stanford University Stanford CA
    Applied Physics
  • MS Blumenkranz
    Ophthalmology
    Stanford University Stanford CA
  • HA Fishman
    Ophthalmology
    Stanford University Stanford CA
  • Footnotes
    Commercial Relationships   P. Huie, None; M.C. Peterman, None; T. Leng, None; C.J. Lee, None; M.F. Marmor, None; D.M. Bloom, None; M.S. Blumenkranz, None; H.A. Fishman, None. Grant Identification: Support: Stanford Bio-X Interdisciplinary Initiatives Program and VISX, Inc.
Investigative Ophthalmology & Visual Science December 2002, Vol.43, 4475. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      P Huie, MC Peterman, T Leng, CJ Lee, MF Marmor, DM Bloom, MS Blumenkranz, HA Fishman; Tissue-engineered Neurite Conduits to Connect Retinal Ganglion Cells to an Electronic Retinal Prosthesis . Invest. Ophthalmol. Vis. Sci. 2002;43(13):4475.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Abstract: : Purpose: Current retinal prostheses use an array of electrodes to stimulate retinal nerve cells at an indeterminate distance. More precise stimulation would be achieved if individual nerve processes could be guided directly to a retinal prosthesis. The goal of this work was to build a three dimensional array of micro-conduits to link nerve cells to an electronic retinal stimulation source. Methods: Using a novel photolithographic technique at the Stanford Nanofabrication Facility, a high aspect ratio mold was made with SU-8, a polymeric photoresist. This mold was used to fabricate a biocompatible membrane consisting of an array of shallow cups with narrow channels (conduits) that extend through the material. Cultured rat retinal ganglion cells (RGC) and PC-12 cells were grown on the array. The microfabricated structures were analyzed using a combination of light, fluorescence and electron microscopy. Results: We successfully microfabricated membranes with a dense array (300/mm2) of 10 um diameter channels going through the thickness of the membrane. Each channel widened at the end to 15 um diameter cups to hold nerve soma. Cultured RGCs grew effectively on this substrate and self assembled into the cups, from which neurites can move down into the channels. Conclusion: We have demonstrated that neuronal cells can be induced to precisely distribute over a membrane surface and that nerve cell processes can be directed to grow in a pre-defined pattern. In this manner, excitable cells could be organized on an electronic retinal prosthesis to minimize stimulation current thresholds and optimize spatio-temporal selectivity.

Keywords: 559 retinal connections, networks, circuitry • 553 regeneration • 474 microscopy: light/fluorescence/immunohistochemistry 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×