Data for this study were taken from participants in the Portland Progression Project, a prospective longitudinal study of the course and risk factors for glaucomatous progression. Individuals with non–end-stage glaucoma or with ocular hypertension plus risk factors for glaucoma undergo testing with a variety of methods, including automated perimetry and SDOCT, approximately every 6 months. Participants were tested at a tertiary glaucoma clinic at Devers Eye Institute. Inclusion criteria were a diagnosis of primary open-angle glaucoma and/or likelihood of developing glaucomatous damage (e.g., high-risk ocular hypertension), as determined by each participant's clinician. Exclusion criteria at entry included an inability to perform reliable visual field testing, best-corrected visual acuity worse than 20/40, or other conditions or medications that may affect the visual field. If both eyes were eligible, one was chosen for delineation and analysis, using the eye with the better-quality series of SDOCT scans if there was a substantial difference, or choosing an eye at random otherwise. All protocols were approved and monitored by the Legacy Health Institutional Review Board, and adhered to the Health Insurance Portability and Accountability Act of 1996 and the tenets of the Declaration of Helsinki. All participants provided written informed consent once all of the risks and benefits of participation were explained to them.
Spectral-domain OCT was performed with a Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany). Peripapillary RNFLT represents the mean distance between the ILM and the posterior boundary of the retinal nerve fiber layer, along a 6° radius circle scan centered on the ONH. The instrument's automated delineations were manually adjusted by experienced technicians when necessary to address obvious delineation errors. Minimum rim width was calculated as the minimum distance from BMO to the ILM, averaged over 24 hand-delineated radial scans.
7 Minimum rim area was calculated by minimizing the area of a trapezium between BMO and the ILM within sectors centered on each radial scan, as previously described.
7 Follow-up scans were colocalized to the baseline reference scan for an eye by matching key vessel features in the infrared images (transverse alignment). Automated white-on-white perimetry was performed using a Humphrey Field Analyzer (HFA II; Carl Zeiss Meditec, Dublin, CA, USA), with a size III stimulus, Swedish Interactive Threshold Algorithm (SITA) standard algorithm, and 24-2 test pattern. Sensitivities were summarized using mean deviation (MD).
For each structural parameter (RNFLT, MRW, or MRA), the LSNR was calculated for individual eyes that had a series of at least six SDOCT scans of high quality. Ordinary least-squares linear regression was performed to derive the trend over time. The slope of this line was used as the measure of “signal.” Note that while least-squares regression does not take into account autocorrelation in a longitudinal sequence, this affects only the standard error and P value of the slope estimate; it does not affect the validity of the estimated rate of change. The residuals from this trend line were calculated, and their standard deviation was used as the measure of “noise.” The LSNR for a given eye is defined as the slope of the trend line divided by the standard deviation of residuals from that line.
Figure 1 illustrates the premise behind the LSNR technique. The rates of change differ markedly. Participant A has a rate of change of −1.90 μm/y, whereas participant B has a rate of change of −0.93 μm/y. However, visual inspection of these series suggests that the evidence that MRW is decreasing is very similar for both eyes. While participant B has a slower rate of change, the series is also less variable. Correspondingly, the LSNRs are very similar: −0.56y
−1 for participant A and −0.55y
−1 for participant B.
Longitudinal signal-to-noise ratios can be compared between parameters using a nonparametric Wilcoxon signed rank test. Note that ordinary least-squares regression aims to minimize residuals, and therefore the true variability is greater than the noise measure used here. However, this is the same for all of the parameters and so should not affect comparisons between them. The median LSNR for each parameter was calculated, together with a 95% confidence interval generated from 10,000 bootstrapped resamplings.