Abstract
Purpose :
To developed a statistical model to predict chances of low vision in uveitis patients under treatment. Accurate assessment of the risk is highly relevant for these patients as uveitis is the leading cause of legal blindness in the working population in the western world.
Methods :
The data consisted of both eyes from 240 uveitis patients who visited the Rotterdam Eye Hospital in the period from 1979 to 2015. Mean follow-up time and mean number of visits were 4.5 years and 20 visits, respectively. A logistic regression model was employed to assess the probability of low vision (<0.3 Snellen) one year after the first visit. In order to deal with separation problems of the logistic model and to account for the dependence between eyes we employed Firth correction and used the sandwich estimator for the variance. A list of the independent variables included in the model can be found in Figure 1. The same model was refitted for patients at different time points during follow-up to assess how the one-year prediction of low vision changes with time. The models’ predictive abilities were evaluated using the receiver operating characteristic (ROC) and area under the curve (AUC).
Results :
Figure 1 shows that visual acuity at baseline is very predictive (log odds ratio=4.84) for low vision one year after the first visit. The effect size is even increasing over the first year of follow-up (Figure 2 A). The one-year predictive ability of the model at baseline is high (AUC=0.878) and further increases with follow-up time (Figure 2 B).
Conclusions :
The models have a good predictive ability and a patient’s current visual acuity is an especially strong predictor for low vision.
This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.