Investigative Ophthalmology & Visual Science Cover Image for Volume 57, Issue 12
September 2016
Volume 57, Issue 12
Open Access
ARVO Annual Meeting Abstract  |   September 2016
Ability to perceive blur in central and near-peripheral retina in myopia
Author Affiliations & Notes
  • Lenna E. Walker
    New England College of Optometry, Boston, Massachusetts, United States
  • Guido Maiello
    Department of Psychology, Northeastern University, Boston, Massachusetts, United States
    UCL Institute of Ophthalmology, University of College London, London, United Kingdom
  • Peter Bex
    Department of Psychology, Northeastern University, Boston, Massachusetts, United States
  • Fuensanta Vera-Diaz
    New England College of Optometry, Boston, Massachusetts, United States
  • Nancy J Coletta
    New England College of Optometry, Boston, Massachusetts, United States
  • Footnotes
    Commercial Relationships   Lenna Walker, None; Guido Maiello, None; Peter Bex, None; Fuensanta Vera-Diaz, None; Nancy Coletta, None
  • Footnotes
    Support  NIH T35 Grant EY007149
Investigative Ophthalmology & Visual Science September 2016, Vol.57, 197. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Lenna E. Walker, Guido Maiello, Peter Bex, Fuensanta Vera-Diaz, Nancy J Coletta; Ability to perceive blur in central and near-peripheral retina in myopia. Invest. Ophthalmol. Vis. Sci. 2016;57(12):197.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Human and animal studies suggest that an ability to accurately detect and respond to blur is essential to emmetropization. Previous research has either evaluated sensitivity to blur indirectly, or has only examined sharp vs. blurred images (although real environments contain multiple blur levels). We evaluate sensitivity to blur differences across the visual field.

Methods : 25 young (22-32yrs) healthy adults participated (n=18 myopes). Subjects had best corrected VA 0.0 LogMAR (20/20) or better in each eye and no binocular or accommodative dysfunction. Refractive error (Mean -3.87±4.15D) was determined by binocular subjective refraction.

Blur discrimination thresholds were measured monocularly (dominant eye) and binocularly as a function of pedestal blur in an adaptive 4AFC task. Dead leaves stimuli were presented in a 50° diameter window @ 40cm. Gaussian blur pedestals (0.125, 0.5, 2, 8, or 32 arcmin) were confined to an annulus at 0°, 4°, 8° and 12° eccentricity, with a blur increment applied to one quadrant of the image. Blur discrimination thresholds were fit with a two-parameter (intrinsic blur and blur sensitivity) dipper function. MANOVA and Spearman correlations were used to evaluate the effects of refractive error, retinal eccentricity, and monocular vs. binocular conditions on intrinsic blur and blur sensitivity.

Results : The level of intrinsic blur increased with retinal eccentricity (p<0.01) and was lower in binocular than monocular conditions (p<0.01). There was a significant correlation between the level of myopia and intrinsic blur at the fovea (ρ -0.52, p=0.03), but not at 4°, 8° or 12° eccentricity.

Blur sensitivity decreased with retinal eccentricity (p<0.01). Blur sensitivity improved in binocular vs. monocular conditions at the fovea (p=0.04), not in the periphery. Blur sensitivity decreased with higher myopic refractive error in the peripheral retina, reaching significance at 12° eccentricity (ρ 0.60, p=0.02).

Conclusions : Sensitivity to blur decreases in the near periphery. Myopes experience a difficulty discriminating blur that is related to elevated levels of intrinsic blur at the fovea and a change in blur sensitivity in the periphery. Our data suggest that this difficulty is ameliorated in binocular viewing, but is still present in myopia. This is consistent with the hypothesis that excessive axial elongation is associated with spatial summation of retinal defocus that is eccentricity dependent.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×