September 2016
Volume 57, Issue 12
Open Access
ARVO Annual Meeting Abstract  |   September 2016
Screening FDA-approved drugs in a zebrafish model of ocular trauma identifies novel cytoprotectants
Author Affiliations & Notes
  • Arife Eroglu
    Ophthalmology, Johns Hopkins University/Wilmer Eye Institute, Baltimore, Maryland, United States
  • Jeffrey Jeff Nelson
    Ophthalmology, Johns Hopkins University/Wilmer Eye Institute, Baltimore, Maryland, United States
  • Aurel Malapani-Scala
    Ophthalmology, Johns Hopkins University/Wilmer Eye Institute, Baltimore, Maryland, United States
  • Jeff S Mumm
    Ophthalmology, Johns Hopkins University/Wilmer Eye Institute, Baltimore, Maryland, United States
  • Footnotes
    Commercial Relationships   Arife Eroglu, None; Jeffrey Nelson, None; Aurel Malapani-Scala , None; Jeff Mumm, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science September 2016, Vol.57, 743. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Arife Eroglu, Jeffrey Jeff Nelson, Aurel Malapani-Scala, Jeff S Mumm; Screening FDA-approved drugs in a zebrafish model of ocular trauma identifies novel cytoprotectants. Invest. Ophthalmol. Vis. Sci. 2016;57(12):743.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Ocular trauma is the most common injury of modern wartime but there are no therapies available for promoting protection from, or reversal of, blast-related ocular injuries. To address this critical deficit, we developed a whole-organism screening platform for identifying compounds that promote long-term ocular tissue survival and sustained photoreceptor function in a zebrafish model of ocular trauma.

Methods : To model ocular trauma in zebrafish, we developed an inducible ocular tissue ablation system; transgenic zebrafish lines in which yellow fluorescent protein (YFP) and the prodrug converting enzyme nitroreductase (NTR) are co-expressed in rod photoreceptors. Specific NTR substrates, such as CB1954, exhibit so-called bystander effects whereby rod cells and surrounding tissues are ablated upon exposure to prodrug, resulting in ocular edema. We use this in a phenotypic screen to identify drugs that protect the larval zebrafish eye from CB1954-induced edema. Each drug is assessed across a titration series spanning six different concentrations at a sample size of 12 per condition. To test for neuroprotective effects of hit compounds showing anti-edema effects, YFP-expressing rod cell numbers are quantified using an automated fluorescent plate reader platform we developed for whole-organism HTS (ARQiv) and high-resolution confocal imaging.

Results : In a pilot screen using previously implicated cytoprotective compounds, we confirmed 10 out of 35 drugs that diminished CB1954-induced edema in zebrafish. Further, we identified one compound, panobinostat (LBH589), which completely abrogated CB1954-induced edema and protected rod photoreceptors from cell death. Panobinostat, thus serves as a positive control for a large-scale screen of ~3,300 FDA-approved drugs aimed at identifying new potential therapies for protecting ocular tissues and retinal cells from traumatic injury.

Conclusions : Combining an easily visualized phenotypic assay with automated detection of photoreceptor numbers via ARQiv is an effective method for discovering drugs that protect, or stimulate regeneration of, ocular cells following traumatic injuries in zebrafish. Drugs that protect, and/or stimulate the regeneration of, ocular tissues and photoreceptor cells in zebrafish and across other model species have the potential to provide improved therapeutic strategies for ocular trauma patients.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×