September 2016
Volume 57, Issue 12
Open Access
ARVO Annual Meeting Abstract  |   September 2016
The microRNA miR-18a regulates NeuroD and photoreceptor differentiation
Author Affiliations & Notes
  • Scott M Taylor
    Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
  • Peter F Hitchcock
    Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
  • Footnotes
    Commercial Relationships   Scott Taylor, None; Peter Hitchcock, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science September 2016, Vol.57, No Pagination Specified. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Scott M Taylor, Peter F Hitchcock; The microRNA miR-18a regulates NeuroD and photoreceptor differentiation. Invest. Ophthalmol. Vis. Sci. 201657(12):.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Purpose : In humans, numerous retinal diseases result in photoreceptor loss and permanent blindness. The ability to replace/regenerate photoreceptors will require detailed knowledge of the mechanisms that govern photoreceptor genesis. In zebrafish, the bHLH transcription factor NeuroD governs photoreceptor genesis through Notch signaling, but information is lacking regarding mechanisms that regulate NeuroD. Members of the miR-17-92 microRNA cluster regulate CNS neurogenesis, and a member of this cluster, miR-18a, is predicted to target neuroD mRNA. The purpose of this study was to determine if miR-18a regulates NeuroD in the retina and if it plays a role in photoreceptor genesis.

Methods : Quantitative PCR and in situ hybridization were used to analyze miR-18a expression in the embryonic and larval retina. Morpholino oligonucleotides (MO) that target the guide strand of the miR-18a precursor (pre-miR-18a) were used to knock down miR-18a and standard control morpholinos served as controls. Embryos were immersed in 1.5 mM EdU for 20 minutes prior to sacrifice to label proliferating cells. Western blot analysis was performed on embryo heads to measure levels of NeuroD and immunocytochemistry was used to label mature photoreceptors. For use in future experiments, CRISPR/Cas9 gene editing was used to generate mutations in pre-miR-18a at the site targeted by the miR-18a MO.

Results : At 48 and 72 hpf, corresponding to the start and completion of photoreceptor genesis, miR-18a is expressed throughout the retina. At 48 hpf, relative to controls, knockdown of miR-18a resulted in a 37% increase in NeuroD protein. At 72 hpf, miR-18a knockdown did not alter cell proliferation, but resulted in larger eyes and a 27% increase in the number of mature photoreceptors. These data indicate that miR-18a negatively regulates NeuroD and functions in newly generated photoreceptors to regulate terminal differentiation. Using CRISPR/Cas9 genome editing, three different miR-18a mutant fish lines have been created with insertions or deletions in the guide strand of pre-miR-18a that we predict will prevent formation of mature miR-18a.

Conclusions : These data indicate that during embryonic development, miR-18a regulates terminal differentiation of photoreceptors and suggest that miR-18a functions through regulation of NeuroD protein levels. We propose that this mechanism regulates the timing and extent of photoreceptor differentiation in the vertebrate retina.

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.