June 2017
Volume 58, Issue 8
Open Access
ARVO Annual Meeting Abstract  |   June 2017
Crosstalk between Sphingolipids and HDACs in the Development of Ischemic Retinal Injury
Author Affiliations & Notes
  • Jie Fan
    Ophthalmology-Storm Eye Inst, Medical Univ of South Carolina, Charleston, South Carolina, United States
  • Jian Liu
    Ophthalmology-Storm Eye Inst, Medical Univ of South Carolina, Charleston, South Carolina, United States
  • Craig E Crosson
    Ophthalmology-Storm Eye Inst, Medical Univ of South Carolina, Charleston, South Carolina, United States
  • Footnotes
    Commercial Relationships   Jie Fan, None; Jian Liu, None; Craig Crosson, None
  • Footnotes
    Support   EY021368, UL1TR000062
Investigative Ophthalmology & Visual Science June 2017, Vol.58, 247. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jie Fan, Jian Liu, Craig E Crosson; Crosstalk between Sphingolipids and HDACs in the Development of Ischemic Retinal Injury. Invest. Ophthalmol. Vis. Sci. 2017;58(8):247.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Previous studies have shown that elevations in acid sphingomyelinase and histone deacetylase (HDAC) activities contribute to ischemic and ocular hypertensive retinal injury. However, how or if these pathways interact remain unknown. This study investigates the interaction between sphingolipid metabolism and protein acetylation in the sequela of events that mediate ischemic retinal injury.

Methods : The effects of acute ischemic retinal injury on the activities of acid sphingomyelinase (ASMase) and Class I HDACs, ceramide and TNF-α levels, and retinal function (ERGs) were evaluated in ASMase+/- knockout and wild type (WT) mice. Studies utilized primary human optic nerve head astrocyte cultures treated with C2-ceramide (from 0.1μM to 10μM) for 6 hours to analyze changes in Class I HDAC activity and TNF-α secretion.

Results : In WT mice, ischemic injury produced a rapid (1 to 2 hrs post-injury) and significant increase in retinal Class I HDAC and ASMase activity of 26.7 ± 2.9% and 29.8 ± 2.6%, respectively. We also measured significant elevation in retinal levels of ceramides (2.1 fold) and TNF-α (3.2 fold). Seven days post-injury, these increases were associated with significant reduction in ERG a- and b-wave amplitudes. In ASMase+/- mice, the ischemic-induced increases in Class I HDAC and ASMase activity were significantly suppressed by 71% and 88% when compared to WT mice. The level of ceramides and TNF-α were significantly decreased by 45% and 46% when compared to corresponding WT retinas. At 7 days post-injury, ASMase+/- mice exhibited significant improvement in a- and b-wave amplitudes when compared to corresponding WT mice. In astrocytes treated with C2-ceramide, Class I HDAC activity and the secreted levels of TNF-α increased in a concentration-dependent manner when compared with vehicle treated cells.

Conclusions : These results provide initial evidence that ischemia-induced increases in Class I HDAC activity and TNF-α secretion are largely dependent on increased sphingolipids metabolism, and ASMase is a participates in this response. Together these data support the idea that sphingolipid metabolism plays a central role in initiating retinal responses to ischemic injury.

This is an abstract that was submitted for the 2017 ARVO Annual Meeting, held in Baltimore, MD, May 7-11, 2017.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×