Investigative Ophthalmology & Visual Science Cover Image for Volume 58, Issue 8
June 2017
Volume 58, Issue 8
Open Access
ARVO Annual Meeting Abstract  |   June 2017
The Impact of Choroidal Swelling on Optic Nerve Head Deformation
Author Affiliations & Notes
  • Andrew Feola
    Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
  • Brian C Samuels
    Ophthalmology, University of Alabama Birmingham, Birmingham, Alabama, United States
  • Emily Nelson
    NASA Glenn Research Center, Cleveland, Ohio, United States
  • C Ross Ethier
    Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
  • Footnotes
    Commercial Relationships   Andrew Feola, None; Brian Samuels, None; Emily Nelson, None; C Ethier, None
  • Footnotes
    Support  Financial support from the Georgia Research Alliance and NASA (grant NNX13AP91G) is gratefully acknowledged
Investigative Ophthalmology & Visual Science June 2017, Vol.58, 3153. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Andrew Feola, Brian C Samuels, Emily Nelson, C Ross Ethier; The Impact of Choroidal Swelling on Optic Nerve Head Deformation. Invest. Ophthalmol. Vis. Sci. 2017;58(8):3153.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Previous work has shown that finite element (FE) models provide vital insight for understanding the impact of intraocular pressure (IOP) and intracranial pressure (ICP) on optic nerve head (ONH) deformation. Here, we expand on these FE models to investigate the biomechanical effects of choroidal swelling on the ONH, as such swelling may influence ONH mechanical strain.

Methods : We extended a recent model of the posterior eye (Feola et al., IOVS, 2016) to include Bruch’s membrane and the choroid. The choroid was represented as a mixture material with a linear-elastic solid matrix and a Donnan equilibrium component to simulate swelling. The sclera, peripapillary sclera, annular ring, pia and dura were modeled as a neo-Hookean matrices with embedded collagen fibers, while the neural tissues and lamina cribrosa (LC) were modeled as linear-elastic. We assumed an IOP=15 mmHg, ICP=10 mmHg, and a mean arterial pressure=86 mmHg as our baseline condition, and imposed a 5 uL increase in choroidal volume, estimated to occur over a cardiac cycle. The computed strain field were decomposed into three principal strains, with the 1st and 3rd components representing tension and compression, respectively. Our outcome measures were the peak 1st and 3rd principal strains in the LC and prelaminar neural tissue (PLNT), since cells are sensitive to mechanical strain.

Results : Choroidal swelling altered the strain distributions in the LC and PLNT (Fig), causing a small increase in the peak 1st (0.91% to 1.1%) and 3rd (-0.89% to -1.14%) principal strain magnitudes within the LC. The effect of choroidal swelling on strain magnitudes in the PLNT was more pronounced: peak 1st principal strain increased from 0.67% to 2.77%, and peak 3rd principal strain changed from -1.69 to -2.71%.

Conclusions : Choroidal swelling had an impact on strain magnitudes in the LC, although not to the same degree as elevating IOP to 30 mmHg which led to peak 1st and 3rd principal strains of 1.45% and -1.89%. However, choroidal swelling considerably increased peak strain magnitudes in the PLNT. Therefore, prolonged or higher degrees of choroidal swelling may initiate a mechanobiological response, highlighting the potential impact of choroidal swelling on biomechanical strains in the ONH.

This is an abstract that was submitted for the 2017 ARVO Annual Meeting, held in Baltimore, MD, May 7-11, 2017.

 

Contour plots of the 1st (left column) and 3rd (right column) principal strains in the ONH. Top panel: baseline condition; Bottom panel: 5 uL of choroidal swelling.

Contour plots of the 1st (left column) and 3rd (right column) principal strains in the ONH. Top panel: baseline condition; Bottom panel: 5 uL of choroidal swelling.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×