Abstract
Purpose :
Age-related macular degeneration (AMD) and proliferative diabetic retinopathy are the leading causes of blindness worldwide. Pathological angiogenesis of the retina is an important process involved in these eye diseases. Since significant number of patients do not respond to the current therapy, the need to discover new targets is high. We investigated here role of SIPRAD0280, a histone deacetylase (HDAC) inhibitor isolated from marine bacteria, on retinal angiogenesis.
Methods :
In vitro angiogenesis assays such as cell proliferation, transwell migration and tube formation were performed using primary human retinal microvascular endothelial to evaluate the efficacy of HDAC inhibitor (SIPRAD0280) on retinal angiogenesis. VEGF165 and Linifanib, a potent inhibitor of RTK were used as the reference compounds.
Results :
SIPRAD0280 inhibited VEGF or non-VEGF induced endothelial cells proliferation in a dose dependent manner. The VEGF induced proliferation and cell migration was reduced by 48.2 ± 11.4% (n =5) and 93.4 ± 1.6% (n =3), respectively in the presence of 100 nM SIPRAD0280. SIPRAD0280 also inhibited basal migration by 76.4 ± 5.7% (n =3). Further, SIPRAD0280 completely blocked the retinal endothelial cells tube formation at 10 nM.
Conclusions :
Our results demonstrate that histone deacetylase (HDAC) inhibitor, SIPRAD0280, significantly impaired the angiogenic processes in a dose dependent manner in human retinal endothelial cells. SIPRAD0280 has a potential be developed as a druggable small molecule inhibitor for the modulation of neovascularization in ocular diseases.
This is an abstract that was submitted for the 2017 ARVO Annual Meeting, held in Baltimore, MD, May 7-11, 2017.