July 2018
Volume 59, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2018
A novel biologics platform extends half-life and improves tissue penetration of intravitreally injected biological agents
Author Affiliations & Notes
  • D. Victor Perlroth
    Kodiak Sciences Inc, Palo Alto, California, United States
  • Joel Naor
    Kodiak Sciences Inc, Palo Alto, California, United States
  • Wayne To
    Kodiak Sciences Inc, Palo Alto, California, United States
  • hong liang
    Kodiak Sciences Inc, Palo Alto, California, United States
  • Footnotes
    Commercial Relationships   D. Victor Perlroth, Kodiak Sciences Inc (E); Joel Naor, Kodiak Sciences Inc (E); Wayne To, Kodiak Sciences Inc (E); hong liang, Kodiak Sciences Inc (E)
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science July 2018, Vol.59, 209. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      D. Victor Perlroth, Joel Naor, Wayne To, hong liang; A novel biologics platform extends half-life and improves tissue penetration of intravitreally injected biological agents. Invest. Ophthalmol. Vis. Sci. 2018;59(9):209.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Therapeutics for retinal diseases often require administration by intravitreal injections, and the ocular half-lives of biologic agents such as aflibercept and ranibizumab are relatively short. Thus, patients are subject to frequent injections in order to keep disease activity under control. We have developed a novel, highly branched phosphorylcholine based biopolymer that is water soluble, optically clear and can be conjugated to biologic molecules such as antibodies to form antibody biopolymer bioconjugates with extended ocular half-life and enhanced tissue penetration.

Methods : Ocular tissue distribution and pharmacokinetics of 125I labeled protein moieties conjugated to custom phosphorylcholine-based biopolymers were evaluated in male rabbits after intravitreal injection. Plasma and ocular tissue samples were collected from 2 animals per time point at various intervals up to 56 days and analyzed for radioactivity to determine the presence of the bioconjugate. Clinical observations and ocular examinations were performed on animals throughout the studies.

Results : Radioactivity measurements indicated that the vitreal half-life of the bioconjugates ranged from 10 to 16 days, depending on the size of the bioconjugate. The elimination profile from both the retina and the choroid approximated that of the vitreous. Importantly, penetration of the bioconjugates into retina and choroid was superior to what has been observed for other large biologics such as antibodies and FC-fusions.

Conclusions : Conjugation of biologic therapeutic molecules with novel, phosphorylcholine-based biopolymers extended the typical ocular half-life of biological agents three to five fold. In addition, the bioconjugates showed markedly increased penetration into the retina and choroid, indicating that the bioconjugate improves ocular tissue distribution. Together, these data suggest this novel antibody biopolymer conjugate approach may ease patient burden by increasing ocular durability of effect for biologics, therefore requiring fewer treatment administrations in order to keep disease activity under control.

This is an abstract that was submitted for the 2018 ARVO Annual Meeting, held in Honolulu, Hawaii, April 29 - May 3, 2018.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×