July 2018
Volume 59, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2018
Automatic prediction of capillarity patterns on Optical Coherence Tomography Angiography images
Author Affiliations & Notes
  • Hernan Andres Rios
    Fundacion Oftalmologica Nacional, Bogota, Colombia
    Universidad del Rosario, Bogota, Colombia
  • Oscar Julian Perdomo
    Universidad Nacional, Bogota, Colombia
  • Vanessa Carpio
    Fundacion Oftalmologica Nacional, Bogota, Colombia
    Universidad del Rosario, Bogota, Colombia
  • Claudia Rosa Carvajal
    Fundacion Oftalmologica Nacional, Bogota, Colombia
  • Fabio A Gonzalez
    Universidad Nacional, Bogota, Colombia
  • Henning Müller
    University of Applied Sciences Western Switzerland HES-SO, Sierre, Switzerland
  • Francisco J Rodriguez
    Fundacion Oftalmologica Nacional, Bogota, Colombia
    Universidad del Rosario, Bogota, Colombia
  • Footnotes
    Commercial Relationships   Hernan Rios, None; Oscar Perdomo, None; Vanessa Carpio, None; Claudia Carvajal, None; Fabio Gonzalez, None; Henning Müller, None; Francisco J Rodriguez, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science July 2018, Vol.59, 1741. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Hernan Andres Rios, Oscar Julian Perdomo, Vanessa Carpio, Claudia Rosa Carvajal, Fabio A Gonzalez, Henning Müller, Francisco J Rodriguez; Automatic prediction of capillarity patterns on Optical Coherence Tomography Angiography images. Invest. Ophthalmol. Vis. Sci. 2018;59(9):1741.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Optical Coherence Tomography Angiography (OCTA) is a novel imaging technique that to study retinal vasculature patterns in detail. OCTA presents open challenges in the interpretation of some angiographic patterns. Over the past decade, Deep learning has been used successfully for pattern recognition, signal processing, and statistical analysis. Additionally, there has been increased interest in deep learning applied to medical imaging based on Convolutional Neural Networks (CNN). The purpose of this study was to determine the accuracy of CNN to calculate nine capillary patterns on OCTA images

Methods : A cross-sectional study with OCTA image was designed for this research. A novel end-to-end Deep Learning model based on CNN was used for automatical analysis of nine parameters related to OCTA images. The proposed model used as an input OCTA images (superficial retinal circulation 3 x 3 mm scan size). The total experimental dataset contained 100 OCTA images. Two random split datasets were chosen as follows, 70 OCTA images for training and 30 OCTA images for test set. Whole image capillarity, foveal capillarity (1 mm central circle), parafoveal capillarity (3 mm central circle), upper half capillarity, lower half capillarity, temporal parafoveal capillarity, superior parafoveal capillarity, nasal parafoveal capillarity and inferior parafoveal capillarity patterns were automatically analyzed and estimated by the CNN

Results : The experimental results showed that the proposed model is able to estimate the whole image capillarity, foveal capillarity, parafoveal capillarity, upper half capillarity, lower half capillarity, temporal parafoveal capillarity, superior parafoveal capillarity, nasal parafoveal capillarity and inferior parafoveal capillarity with a mean absolute percentage error of 2.6%, 19%, 3.7%, 5%, 4.9%, 3.8%, 7%, 6% and 5.5% respectively

Conclusions : CNN showed an outstanding performance measuring capillarity patterns in OCTA images. Deep learning methods have the ability to find and interpret associated features for measuring capillarity in parts of the OCTA image. Future studies with a major number of OCTA images, different retinal conditions and parameters are required to validate the model in the parameter prediction task that could be used clinically

This is an abstract that was submitted for the 2018 ARVO Annual Meeting, held in Honolulu, Hawaii, April 29 - May 3, 2018.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×